Summary

Måling af 3D In-vivo Skulder kinematics ved hjælp af Biplanar Videoradiography

Published: March 12, 2021
doi:

Summary

Biplan videoradiografi kan kvantificere skulder kinematik med en høj grad af nøjagtighed. Protokollen beskrevet heri var specielt designet til at spore scapula, humerus, og ribbenene under planar humeral elevation, og skitserer procedurerne for dataindsamling, behandling og analyse. Unikke overvejelser i forbindelse med dataindsamling er også beskrevet.

Abstract

Skulderen er en af den menneskelige krops mest komplekse fælles systemer, med bevægelse sker gennem koordinerede aktioner af fire individuelle led, flere ledbånd, og ca 20 muskler. Desværre, skulder patologier (f.eks rotator manchet tårer, fælles forskydninger, gigt) er almindelige, hvilket resulterer i betydelige smerter, handicap, og nedsat livskvalitet. Den specifikke ætiologi for mange af disse patologiske tilstande er ikke fuldt forstået, men det er almindeligt accepteret, at skulderpatologi ofte er forbundet med ændret fælles bevægelse. Desværre er måling af skulderbevægelse med den nødvendige nøjagtighed til at undersøge bevægelsesbaserede hypoteser ikke trivielt. Men radiografiske-baserede bevægelsesmåling teknikker har givet de nødvendige fremskridt til at undersøge bevægelsesbaserede hypoteser og give en mekanistisk forståelse af skulder funktion. Formålet med denne artikel er således at beskrive tilgangene til måling af skulderbevægelse ved hjælp af et brugerdefineret biplanar videoradiografisystem. De specifikke mål med denne artikel er at beskrive protokollerne til at erhverve biplanar videoradiographic billeder af skulderkomplekset, erhverve CT-scanninger, udvikle 3D-knoglemodeller, lokalisere anatomiske vartegn, spore humerusens position og orientering, scapula og torso fra de toplanariske radiografiske billeder og beregne de kinemmatiske resultatforanstaltninger. Derudover vil artiklen beskrive særlige overvejelser, der er unikke for skulderen, når de måler led kinematik ved hjælp af denne tilgang.

Introduction

Skulderen er en af den menneskelige krops mest komplekse fælles systemer, med bevægelse sker gennem koordinerede aktioner af fire individuelle led, flere ledbånd, og ca 20 muskler. Skulderen har også den største vifte af bevægelse af kroppens store led og er ofte beskrevet som et kompromis mellem mobilitet og stabilitet. Desværre, skulder patologier er almindelige, hvilket resulterer i betydelige smerter, handicap, og nedsat livskvalitet. For eksempel, rotator manchet tårer påvirker omkring 40% af befolkningen over 601,2,3, med ca 250.000 rotator manchet reparationer udføres årligt4, og en anslået økonomisk byrde på $3-5 milliarder om året i USA5. Derudover, skulder forskydninger er almindelige og er ofte forbundet med kronisk dysfunktion6. Endelig glenohumeral led slidgigt (OA) er et andet væsentligt klinisk problem, der involverer skulderen, med befolkningsundersøgelser viser, at omkring 15%-20% af voksne over 65 år har radiografiske beviser for glenohumeral OA7,8. Disse betingelser er smertefulde, forringe aktivitetsniveauer, og mindske livskvaliteten.

Selv om patogenerne af disse betingelser ikke er fuldt forstået, er det almindeligt accepteret, at ændret skulder bevægelse er forbundet med mange skulder patologier9,10,11. Specifikt kan unormal fælles bevægelse bidrage til patologien9,12, eller at patologien kan føre til unormal fælles bevægelse13,14. Forholdet mellem fælles bevægelse og patologi er sandsynligvis komplekse, og subtile ændringer i fælles bevægelse kan være vigtige i skulderen. For eksempel, selv om kantede bevægelse er den fremherskende bevægelse, der forekommer på glenohumeral fælles, fælles oversættelser også forekomme under skulder bevægelse. Under normale forhold overstiger disse oversættelser sandsynligvis ikke flere millimeter15,16,17,18,19, og kan derfor være under niveauet for in vivo nøjagtighed for nogle måleteknikker. Selv om det kan være fristende at antage, at små afvigelser i fælles bevægelse kan have ringe klinisk virkning, Er det vigtigt også at erkende, at den kumulative effekt af subtile afvigelser over års skulder aktivitet kan overstige den enkeltes tærskel for væv healing og reparation. Desuden er in-vivo kræfter på glenohumeral fælles ikke ligegyldige. Ved hjælp af brugerdefinerede instrumenterede glenohumeral fælles implantater, tidligere undersøgelser har vist, at hæve en 2 kg vægt til hovedhøjde med en udstrakt arm kan resultere i glenohumeral fælles kræfter, der kan variere fra 70% til 238% af kropsvægt20,21,22. Derfor kan kombinationen af subtile ændringer i ledbevægelse og høje kræfter koncentreret over glenoidens lille bærende overfladeareal bidrage til udviklingen af degenerative skulderpatologier.

Historisk set er målingen af skulderbevægelse blevet udført gennem en række eksperimentelle tilgange. Disse tilgange har inkluderet brugen af komplekse kadaveriske testsystemer designet til at simulere skulderbevægelse23,24,25,26,27, videobaserede bevægelsesoptagelsessystemer med overflademarkører28,29,31, overflademonterede elektromagnetiske sensorer32,33,34,35 , knoglenåle med reflekterende markører eller andre sensorer, der er fastgjort36,37,38, statisk todimensionel medicinsk billeddannelse (dvs. fluoroskopi39,40,41 og røntgenbilleder17,42,43,44,45), statisk tredimensionel (3D) medicinsk billeddannelse ved hjælp af MRI46,47, computertomografi48, og dynamisk, 3D enkelt plan fluoroskopisk billeddannelse49,50,51. På det seneste har bærbare sensorer (f.eks. inertial måleenheder) vundet popularitet til måling af skulderbevægelse uden for laboratorieindstillingen og under frit levevilkår52,53,54,55,56,57.

I de senere år har der været en spredning af biplanede radiografiske eller fluoroskopiske systemer designet til præcist at måle dynamiske, 3D in-vivo bevægelser af skulderen58,59,60,61,62. Formålet med denne artikel er at beskrive forfatternes tilgang til måling af skulderbevægelse ved hjælp af et brugerdefineret biplanar videoradiografisystem. De specifikke mål med denne artikel er at beskrive protokollerne til at erhverve biplanar videoradiographic billeder af skulderkomplekset, erhverve CT-scanninger, udvikle 3D-knoglemodeller, lokalisere anatomiske vartegn, spore humerusens position og orientering, scapula og torso fra de toplanariske radiografiske billeder og beregne kinemmatiske resultatforanstaltninger.

Protocol

Forud for dataindsamlingen gav deltageren skriftligt informeret samtykke. Undersøgelsen blev godkendt af Henry Ford Health Systems Institutionelle Review Board. Protokoller til anskaffelse, behandling og analyse af toplans radiografiske bevægelsesdata er meget afhængige af billedbehandlingssystemer, databehandlingssoftware og resultatmål af interesse. Følgende protokol var specielt designet til at spore scapula, humerus, og den tredje og den fjerde ribben under halshuggede-fly eller koron…

Representative Results

En 52-årig asymptomatisk kvinde (BMI = 23,6 kg/m2) blev rekrutteret som led i en tidligere undersøgelse og gennemgik bevægelsestest (coronal fly bortførelse) på hendes dominerende (højre) skulder65. Forud for dataindsamlingen gav deltageren skriftligt informeret samtykke. Undersøgelsen blev godkendt af Henry Ford Health Systems Institutionelle Review Board. Dataindsamlingen blev udført ved hjælp af den tidligere beskrevne protokol (figur 3). <p…

Discussion

Den teknik, der er beskrevet her, overvinder flere ulemper forbundet med konventionelle teknikker til vurdering af skulderbevægelse (dvs. kadaveriske simuleringer, 2D-billeddannelse, statisk 3D-billeddannelse, videobaserede bevægelsesoptagelsessystemer, bærbare sensorer osv.) ved at give nøjagtige mål for 3D-fælles bevægelse under dynamiske aktiviteter. Nøjagtigheden af den protokol, der er beskrevet heri blev etableret for glenohumeral fælles mod guldstandarden for radiostereometrisk analyse (RSA) at være ±0,…

Declarações

The authors have nothing to disclose.

Acknowledgements

Forskning rapporteret i denne publikation blev støttet af National Institute of Arthritis og muskel- og hudsygdomme under tildelingsnummer R01AR051912. Indholdet er udelukkende forfatternes ansvar og repræsenterer ikke nødvendigvis de officielle synspunkter fra National Institutes of Health (NIH).

Materials

Calibration cube Built in-house N/A 10 cm Lucite box with a tantalum bead in each corner and four additional beads midway along the box’s vertical edges (12 beads total). The positions of each bead are precisely known relative to a corner of the box that serves as the origin of the laboratory coordinate system.
Distortion correction grid Built in-house N/A Lucite sheet that covers the entire face of the 16 inch image intensifier and contains an orthogonal array of tantalum beads spaced at 1 cm.
ImageJ National Institutes of Health N/A Image processing software used to prepare TIFF stack of bone volumes.
Markerless Tracking Workbench Custom, in house software N/A A workbench of custom software used to digitize anatomical landmarks on 3D bone models, constructs anatomical coordinate systems, uses intensity-based image registration to perform markerless tracking, and calculates and visualize kinematic outcomes measures.
MATLAB Mathworks, Inc N/A Computer programming software. For used to perform data processing and analysis.
Mimics (version 20) Materialise, Inc N/A Image processing software used to segment humerus, scapula, and ribs from CT scan.
Open Inventor Thermo Fisher Scientific N/A 3D graphics program used to visualize bones
Phantom Camera Control (PCC) software (version 3.4) N/A Software for specifying camera parameters, and acquiring and saving radiographic images
Pulse generator (Model 9514) Quantum Composers, Inc. N/A Syncs the x-ray and camera systems and specifies the exposure time
Two 100 kW pulsed x-ray generators (Model CPX 3100CV) EMD Technologies N/A Generates the x-rays used to produce radiographic images
Two 40 cm image intensifiers (Model P9447H110) North American Imaging N/A Converts x-rays into photons to produce visible image
Two Phantom VEO 340 cameras Vision Research N/A High speed cameras record the visible image created by the x-ray system

Referências

  1. Milgrom, C., Schaffler, M., Gilbert, S., van Holsbeeck, M. Rotator-cuff changes in asymptomatic adults. The effect of age, hand dominance and gender. Journal of Bone and Joint Surgery (British volume). 77 (2), 296-298 (1995).
  2. Kim, H. M., et al. Location and initiation of degenerative rotator cuff tears: an analysis of three hundred and sixty shoulders. Journal of Bone and Joint Surgery (American Volume). 92 (5), 1088-1096 (2010).
  3. Yamamoto, A., et al. Prevalence and risk factors of a rotator cuff tear in the general population. Journal of Shoulder and Elbow Surgery. 19 (1), 116-120 (2010).
  4. Colvin, A. C., Egorova, N., Harrison, A. K., Moskowitz, A., Flatow, E. L. National trends in rotator cuff repair. Journal of Bone and Joint Surgery (American Volume). 94 (3), 227-233 (2012).
  5. Vitale, M. A., et al. Rotator cuff repair: an analysis of utility scores and cost-effectiveness. Journal of Shoulder and Elbow Surgery. 16 (2), 181-187 (2007).
  6. Zacchilli, M. A., Owens, B. D. Epidemiology of shoulder dislocations presenting to emergency departments in the United States. Journal of Bone and Joint Surgery (American Volume). 92 (3), 542-549 (2010).
  7. Oh, J. H., et al. The prevalence of shoulder osteoarthritis in the elderly Korean population: association with risk factors and function. Journal of Shoulder and Elbow Surgery. 20 (5), 756-763 (2011).
  8. Kobayashi, T., et al. Prevalence of and risk factors for shoulder osteoarthritis in Japanese middle-aged and elderly populations. Journal of Shoulder and Elbow Surgery. 23 (5), 613-619 (2014).
  9. Ludewig, P. M., Reynolds, J. F. The association of scapular kinematics and glenohumeral joint pathologies. Journal of Orthopaedic and Sports Physical Therapy. 39 (2), 90-104 (2009).
  10. Michener, L. A., McClure, P. W., Karduna, A. R. Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clinical Biomechanics. 18 (5), 369-379 (2003).
  11. Seitz, A. L., McClure, P. W., Finucane, S., Boardman, N. D., Michener, L. A. Mechanisms of rotator cuff tendinopathy: intrinsic, extrinsic, or both. Clinical Biomechanics. 26 (1), 1-12 (2011).
  12. Lawrence, R. L., Braman, J. P., Ludewig, P. M. Shoulder kinematics impact subacromial proximities: a review of the literature. Brazilian Journal of Physical Therapy. 24 (3), 219-230 (2019).
  13. McClure, P. W., Michener, L. A., Karduna, A. R. Shoulder function and 3-dimensional scapular kinematics in people with and without shoulder impingement syndrome. Physical Therapy. 86 (8), 1075-1090 (2006).
  14. Rundquist, P. J. Alterations in scapular kinematics in subjects with idiopathic loss of shoulder range of motion. Journal of Orthopaedic and Sports Physical Therapy. 37 (1), 19-25 (2007).
  15. Graichen, H., et al. Effect of abducting and adducting muscle activity on glenohumeral translation, scapular kinematics and subacromial space width in vivo. Journal of Biomechanics. 38 (4), 755-760 (2005).
  16. Bey, M. J., Kline, S. K., Zauel, R., Lock, T. R., Kolowich, P. A. Measuring dynamic in-vivo glenohumeral joint kinematics: technique and preliminary results. Journal of Biomechanics. 41 (3), 711-714 (2008).
  17. Poppen, N. K., Walker, P. S. Normal and abnormal motion of the shoulder. Journal of Bone and Joint Surgery (American Volume). 58 (2), 195-201 (1976).
  18. Graichen, H., et al. Magnetic resonance-based motion analysis of the shoulder during elevation. Clinical Orthopaedics and Related Research. 370 (370), 154-163 (2000).
  19. Howell, S. M., Galinat, B. J., Renzi, A. J., Marone, P. J. Normal and abnormal mechanics of the glenohumeral joint in the horizontal plane. Journal of Bone and Joint Surgery (American Volume). 70 (2), 227-232 (1988).
  20. Bergmann, G., et al. In vivo glenohumeral contact forces–measurements in the first patient 7 months postoperatively. Journal of Biomechanics. 40 (10), 2139-2149 (2007).
  21. Westerhoff, P., et al. In vivo measurement of shoulder joint loads during activities of daily living. Journal of Biomechanics. 42 (12), 1840-1849 (2009).
  22. Bergmann, G., et al. In vivo gleno-humeral joint loads during forward flexion and abduction. Journal of Biomechanics. 44 (8), 1543-1552 (2011).
  23. Halder, A. M., Zhao, K. D., Odriscoll, S. W., Morrey, B. F., An, K. N. Dynamic contributions to superior shoulder stability. Journal of Orthopaedic Research. 19 (2), 206-212 (2001).
  24. Debski, R. E., et al. A new dynamic testing apparatus to study glenohumeral joint motion. Journal of Biomechanics. 28 (7), 869-874 (1995).
  25. Malicky, D. M., Soslowsky, L. J., Blasier, R. B., Shyr, Y. Anterior glenohumeral stabilization factors: progressive effects in a biomechanical model. Journal of Orthopaedic Research. 14 (2), 282-288 (1996).
  26. Payne, L. Z., Deng, X. H., Craig, E. V., Torzilli, P. A., Warren, R. F. The combined dynamic and static contributions to subacromial impingement. A biomechanical analysis. American Journal of Sports Medicine. 25 (6), 801-808 (1997).
  27. Wuelker, N., Wirth, C. J., Plitz, W., Roetman, B. A dynamic shoulder model: reliability testing and muscle force study. Journal of Biomechanics. 28 (5), 489-499 (1995).
  28. Dillman, C. J., Fleisig, G. S., Andrews, J. R. Biomechanics of pitching with emphasis upon shoulder kinematics. Journal of Orthopaedic and Sports Physical Therapy. 18 (2), 402-408 (1993).
  29. Fleisig, G. S., Andrews, J. R., Dillman, C. J., Escamilla, R. F. Kinetics of baseball pitching with implications about injury mechanisms. American Journal of Sports Medicine. 23 (2), 233-239 (1995).
  30. Fleisig, G. S., Barrentine, S. W., Zheng, N., Escamilla, R. F., Andrews, J. R. Kinematic and kinetic comparison of baseball pitching among various levels of development. Journal of Biomechanics. 32 (12), 1371-1375 (1999).
  31. Werner, S. L., Gill, T. J., Murray, T. A., Cook, T. D., Hawkins, R. J. Relationships between throwing mechanics and shoulder distraction in professional baseball pitchers. American Journal of Sports Medicine. 29 (3), 354-358 (2001).
  32. An, K. N., Browne, A. O., Korinek, S., Tanaka, S., Morrey, B. F. Three-dimensional kinematics of glenohumeral elevation. Journal of Orthopaedic Research. 9 (1), 143-149 (1991).
  33. Johnson, M. P., McClure, P. W., Karduna, A. R. New method to assess scapular upward rotation in subjects with shoulder pathology. Journal of Orthopaedic and Sports Physical Therapy. 31 (2), 81-89 (2001).
  34. Borstad, J. D., Ludewig, P. M. Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clinical Biomechanics. 17 (9-10), 650-659 (2002).
  35. Meskers, C. G., vander Helm, F. C., Rozendaal, L. A., Rozing, P. M. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. Journal of Biomechanics. 31 (1), 93-96 (1998).
  36. McClure, P. W., Michener, L. A., Sennett, B. J., Karduna, A. R. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. Journal of Shoulder and Elbow Surgery. 10 (3), 269-277 (2001).
  37. Lawrence, R. L., Braman, J. P., LaPrade, R. F., Ludewig, P. M. Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 1: sternoclavicular, acromioclavicular, and scapulothoracic joints. Journal of Orthopaedic and Sports Physical Therapy. 44 (9), 636-645 (2014).
  38. Lawrence, R. L., Braman, J. P., Staker, J. L., LaPrade, R. F., Ludewig, P. M. Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 2: glenohumeral joint. Journal of Orthopaedic and Sports Physical Therapy. 44 (9), 646-655 (2014).
  39. Burkhart, S. S. Fluoroscopic comparison of kinematic patterns in massive rotator cuff tears. A suspension bridge model. Clinical Orthopaedics and Related Research. 284, 144-152 (1992).
  40. Mandalidis, D. G., Mc Glone, B. S., Quigley, R. F., McInerney, D., O’Brien, M. Digital fluoroscopic assessment of the scapulohumeral rhythm. Surgical and Radiologic Anatomy. 21 (4), 241-246 (1999).
  41. Pfirrmann, C. W., Huser, M., Szekely, G., Hodler, J., Gerber, C. Evaluation of complex joint motion with computer-based analysis of fluoroscopic sequences. Investigative Radiology. 37 (2), 73-76 (2002).
  42. Deutsch, A., Altchek, D. W., Schwartz, E., Otis, J. C., Warren, R. F. Radiologic measurement of superior displacement of the humeral head in the impingement syndrome. Journal of Shoulder and Elbow Surgery. 5 (3), 186-193 (1996).
  43. Hawkins, R. J., Schutte, J. P., Janda, D. H., Huckell, G. H. Translation of the glenohumeral joint with the patient under anesthesia. Journal of Shoulder and Elbow Surgery. 5 (4), 286-292 (1996).
  44. Yamaguchi, K., et al. Glenohumeral motion in patients with rotator cuff tears: a comparison of asymptomatic and symptomatic shoulders. Journal of Shoulder and Elbow Surgery. 9 (1), 6-11 (2000).
  45. Paletta, G. A., Warner, J. J., Warren, R. F., Deutsch, A., Altchek, D. W. Shoulder kinematics with two-plane x-ray evaluation in patients with anterior instability or rotator cuff tearing. Journal of Shoulder and Elbow Surgery. 6 (6), 516-527 (1997).
  46. Graichen, H., et al. Three-dimensional analysis of the width of the subacromial space in healthy subjects and patients with impingement syndrome. AJR: American Journal of Roentgenology. 172 (4), 1081-1086 (1999).
  47. Rhoad, R. C., et al. A new in vivo technique for three-dimensional shoulder kinematics analysis. Skeletal Radiology. 27 (2), 92-97 (1998).
  48. Baeyens, J. P., Van Roy, P., De Schepper, A., Declercq, G., Clarijs, J. P. Glenohumeral joint kinematics related to minor anterior instability of the shoulder at the end of the late preparatory phase of throwing. Clinical Biomechanics. 16 (9), 752-757 (2001).
  49. Lawrence, R. L., Braman, J. P., Keefe, D. F., Ludewig, P. M. The Coupled Kinematics of Scapulothoracic Upward Rotation. Physical Therapy. 100 (2), 283-294 (2020).
  50. Lawrence, R. L., Braman, J. P., Ludewig, P. M. The impact of decreased scapulothoracic upward rotation on subacromial proximities. Journal of Orthopaedic and Sports Physical Therapy. 49 (3), 180-191 (2019).
  51. Matsuki, K., et al. Dynamic in vivo glenohumeral kinematics during scapular plane abduction in healthy shoulders. Journal of Orthopaedic and Sports Physical Therapy. 42 (2), 96-104 (2012).
  52. Chapman, R. M., Torchia, M. T., Bell, J. E., Van Citters, D. W. Assessing shoulder biomechanics of healthy elderly individuals during activities of daily living using inertial measurement units: High maximum elevation Is achievable but rarely used. Journal of Biomechanical Engineering. 141 (4), (2019).
  53. De Baets, L., vander Straaten, R., Matheve, T., Timmermans, A. Shoulder assessment according to the international classification of functioning by means of inertial sensor technologies: A systematic review. Gait and Posture. 57, 278-294 (2017).
  54. Dowling, B., McNally, M. P., Laughlin, W. A., Onate, J. A. Changes in throwing arm mechanics at increased throwing distances during structured long-toss. American Journal of Sports Medicine. 46 (12), 3002-3006 (2018).
  55. Kirking, B., El-Gohary, M., Kwon, Y. The feasibility of shoulder motion tracking during activities of daily living using inertial measurement units. Gait and Posture. 49, 47-53 (2016).
  56. Morrow, M. M. B., Lowndes, B., Fortune, E., Kaufman, K. R., Hallbeck, M. S. Validation of inertial measurement units for upper body kinematics. Journal of Applied Biomechanics. 33 (3), 227-232 (2017).
  57. Rawashdeh, S. A., Rafeldt, D. A., Uhl, T. L. Wearable IMU for shoulder injury prevention in overhead sports. Sensors (Basel). 16 (11), (2016).
  58. Baumer, T. G., et al. Effects of asymptomatic rotator cuff pathology on in vivo shoulder motion and clinical outcomes. Journal of Shoulder and Elbow Surgery. 26 (6), 1064-1072 (2017).
  59. Bey, M. J., et al. In vivo measurement of subacromial space width during shoulder elevation: technique and preliminary results in patients following unilateral rotator cuff repair. Clinical Biomechanics. 22 (7), 767-773 (2007).
  60. Peltz, C. D., et al. Differences in glenohumeral joint morphology between patients with anterior shoulder instability and healthy, uninjured volunteers. Journal of Shoulder and Elbow Surgery. 24 (7), 1014-1020 (2015).
  61. Coats-Thomas, M. S., Massimini, D. F., Warner, J. J. P., Seitz, A. L. In vivo evaluation of subacromial and internal impingement risk in asymptomatic individuals. American Journal of Physical Medicine and Rehabilitation. 97 (9), 659-665 (2018).
  62. Millett, P. J., Giphart, J. E., Wilson, K. J., Kagnes, K., Greenspoon, J. A. Alterations in glenohumeral kinematics in patients with rotator cuff tears measured with biplane fluoroscopy. Arthroscopy. 32 (3), 446-451 (2016).
  63. Li, W., Hou, Q. Analysis and correction of the nonuniformity of light field in the high resolution X-ray digital radiography. Sixth International Conference on Natural Computation. 7, 3803-3807 (2010).
  64. Wu, G., et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics. 38 (5), 981-992 (2005).
  65. Baumer, T. G., et al. Effects of rotator cuff pathology and physical therapy on in vivo shoulder motion and clinical outcomes in patients with a symptomatic full-thickness rotator cuff tear. Orthopaedic Journal of Sports Medicine. 4 (9), 2325967116666506 (2016).
  66. Ludewig, P. M., et al. Motion of the shoulder complex during multiplanar humeral elevation. Journal of Bone and Joint Surgery (American Volume). 91 (2), 378-389 (2009).
  67. Bey, M. J., Zauel, R., Brock, S. K., Tashman, S. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. Journal of Biomechanical Engineering. 128 (4), 604-609 (2006).
  68. Tashman, S., Anderst, W. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Journal of Biomechanical Engineering. 125 (2), 238-245 (2003).
  69. Anderst, W., Zauel, R., Bishop, J., Demps, E., Tashman, S. Validation of three-dimensional model-based tibio-femoral tracking during running. Medical Engineering and Physics. 31 (1), 10-16 (2009).
  70. Kage, C. C., et al. Validation of an automated shape-matching algorithm for biplane radiographic spine osteokinematics and radiostereometric analysis error quantification. PloS One. 15 (2), 0228594 (2020).
  71. Pitcairn, S., Kromka, J., Hogan, M., Anderst, W. Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities. Journal of Biomechanics. 103, 109696 (2020).
  72. Bey, M. J., et al. In vivo shoulder function after surgical repair of a torn rotator cuff: glenohumeral joint mechanics, shoulder strength, clinical outcomes, and their interaction. American Journal of Sports Medicine. 39 (10), 2117-2129 (2011).
  73. Peltz, C. D., et al. Associations between in-vivo glenohumeral joint motion and morphology. Journal of Biomechanics. 48 (12), 3252-3257 (2015).
  74. Massimini, D. F., Warner, J. J., Li, G. Glenohumeral joint cartilage contact in the healthy adult during scapular plane elevation depression with external humeral rotation. Journal of Biomechanics. 47 (12), 3100-3106 (2014).
  75. Miller, R. M., et al. Effects of exercise therapy for the treatment of symptomatic full-thickness supraspinatus tears on in vivo glenohumeral kinematics. Journal of Shoulder and Elbow Surgery. 25 (4), 641-649 (2016).
  76. Lawrence, R. L., Ruder, M. C., Zauel, R., Bey, M. J. Instantaneous helical axis estimation of glenohumeral kinematics: The impact of rotator cuff pathology. Journal of Biomechanics. 109, 109924 (2020).
  77. National Council on Radiation Protection and Measurements. Evaluating and communicating radiation risks for studies involving human subjects: guidance for researchers and institutional review boards: recommendations of the National Council on Radiation Protection and Measurements. National Council on Radiation Protection and Measurements. , (2020).
  78. Akbari-Shandiz, M., et al. MRI vs CT-based 2D-3D auto-registration accuracy for quantifying shoulder motion using biplane video-radiography. Journal of Biomechanics. 82, 30385001 (2019).
  79. Breighner, R. E., et al. Technical developments: Zero echo time imaging of the shoulder: enhanced osseous detail by using MR imaging. Radiology. 286 (3), 960-966 (2018).
  80. Fox, A. M., et al. The effect of decreasing computed tomography dosage on radiostereometric analysis (RSA) accuracy at the glenohumeral joint. Journal of Biomechanics. 44 (16), 2847-2850 (2011).
  81. Lawrence, R. L., et al. Effect of glenohumeral elevation on subacromial supraspinatus compression risk during simulated reaching. Journal of Orthopaedic Research. 35 (10), 2329-2337 (2017).
  82. Peltz, C. D., et al. Associations among shoulder strength, glenohumeral joint motion, and clinical outcome after rotator cuff repair. American Journal of Orthopedics. 43 (5), 220-226 (2014).
check_url/pt/62210?article_type=t

Play Video

Citar este artigo
Lawrence, R. L., Zauel, R., Bey, M. J. Measuring 3D In-vivo Shoulder Kinematics using Biplanar Videoradiography. J. Vis. Exp. (169), e62210, doi:10.3791/62210 (2021).

View Video