Summary

机器人辅助肾移植

Published: July 19, 2021
doi:

Summary

本文提供了来自活体供体的机器人辅助肾移植的技术细节。

Abstract

本文描述了来自活体供体的机器人辅助肾移植(RAKT)。机器人停靠在患者分开的双腿之间,放置在仰卧的特伦德伦堡位置。肾同种异体移植物由活体供体提供。在血管吻合术之前,通过在输尿管中插入双J支架来制备肾同种异体移植物,并通过将其包裹在冰袋中来降低吻合口的温度。放置一个用于机器人相机的 12 mm 或 8 mm 端口和三个用于机械臂的 8 mm 端口。在解剖髂血管和膀胱之前,通过将两侧的腹膜瓣抬高到腰肌上,为肾同种异体移植物创建一个腹膜袋。做一个6厘米的Pfannenstiel切口,将肾脏插入腹膜袋,在右髂血管的外侧。

用斗牛犬夹住髂外静脉后,进行静脉切开术,并用6/0聚四氟乙烯缝合线将移植肾静脉以端到端连续的方式与髂外静脉吻合。夹紧移植肾静脉后,髂静脉脱夹。随后钳夹髂外动脉、动脉切开术、6/0聚四氟乙烯缝合动脉吻合术、钳夹移植物肾动脉和髂外动脉脱夹。然后进行再灌注,并使用Lich-Gregoir技术进行输尿管膀胱造口术。腹膜在几个位置用聚合物锁定夹封闭,并通过其中一个工作端口放置一个封闭的吸入排水管。将气腹放气后,关闭所有切口。

Introduction

与腹膜透析或血液透析相比,肾移植有助于延长生存期和改善生活质量1。虽然开放式方法是肾移植的标准程序,但最近采用了机器人辅助技术234。具体来说,机器人辅助肾移植(RAKT)与开放式肾移植相比有几个优点:术后疼痛最小,美容效果更好,伤口感染更少,住院时间更短5。此外,微创通路和机器人技术使外科医生能够安全地对病态肥胖患者进行肾脏移植6789然而,由于其复杂性,RAKT需要一个学习曲线,以便在操作时间、功能结果和安全性方面实现足够的可重复性10

具有多血管的同种异体移植物通常需要血管重建,这会导致冷热缺血时间延长。尽管RAKT存在技术挑战,但一项欧洲多中心研究报告称,使用具有多个血管的同种异体移植物进行RAKT在技术上是可行的,并导致有利的功能结果11。虽然在血管吻合术期间将肾同种异体移植物放置在骨盆内侧更为常见,但根据先前的报告456789在该方案中,同种异体移植物被放置在髂血管外侧的腹膜袋上。虽然在吻合术期间将同种异体移植物放在内侧并将其翻转到腹膜袋可能是安全的,但对于没有经验的外科医生来说,这种技术可能并不熟悉。此外,在腹膜袋和肾血管中以适当位置进行血管吻合更方便。本文介绍了无需翻转即可进行 RAKT 的分步过程。

Protocol

这项研究获得了峨山医疗中心机构审查委员会的批准(IRB编号:2021-0101)。 1. 移植前准备 患者选择包括需要肾移植的终末期肾病患者。注意:如果接受者未满 18 岁,则可能不考虑 RAKT。 排除任何未经治疗的恶性肿瘤或活动性感染患者。 确保受者在心脏和肺功能方面适合手术,并适合微创方法。 如果患者有腹部大手术史或严重腹膜内…

Representative Results

我们为中心患有RAKT的接受者建立了常规临床路径。移植后一天进行肾多普勒超声检查,移植后两天进行锝-99m二乙烯三胺五乙酸肾扫描。对于静脉血栓栓塞预防,在RAKT后的前24小时内使用间歇性气动加压装置。Foley导管在术后第四天移除。第五天,在非增强型计算机体层成像确认无腹内并发症后,移除闭合抽吸引流管。除非发生重大不良事件,否则患者在术后第六天出院。 在?…

Discussion

尽管腹腔镜和机器人辅助技术已广泛应用于活体供体肾切除术,但肾移植仍主要使用传统的开放技术进行。然而,最近,肾移植的微创方法已被越来越多地使用。与传统的开放手术相比,微创肾移植手术部位感染、切口疝和伤口裂开的风险更低,住院时间更短121314、1516<…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢峨山医学中心科学出版团队的Joon Seo Lim博士在准备这份手稿时提供的编辑协助。

Materials

12 mm Fluorescence Endoscope, 30° Intuitive Surgical 370893 robotic instrument
8 mm Blunt Obturator Intuitive Surgical 420008 robotic instrument
8 mm Instrument Cannula Intuitive Surgical 420002 robotic instrument
ATRAUMATIC ROBOTIC VESSEL CLIPS RZ Medizintechnic GmbH 300-100-799
BARD INLAY OPTIMA URETERAL STENT BARD Medical 78414 4.7 Fr./14 cm
Black Diamond Micro Forceps Intuitive Surgical 420033 robotic instrument
COATED VICRYL 4-0 Ethicon Endo-Surgery, Inc. W9437
Da Vinci Si, X, or Xi Intuitive Surgical
Fenestrated bipolar forceps Intuitive Surgical 470205 robotic instrument
GELPORT LAPAROSCOPIC SYSTEM Applied Medical Resources Corporation C8XX2 standard laparoscopic equipment
GORE-TEX SUTURE CV-6 W.L. Gore and Associates Inc. 6M02A
GORE-TEX SUTURE CV-7 W.L. Gore and Associates Inc. 7K02A
HEMO CLIP WECK 523735
HEM-O-LOK CLIP WECK 544220
Hot Shears (Monopolar Curved Scissors) Intuitive Surgical 420179 robotic instrument
laparoscopic atraumatic grasping forceps standard laparoscopic equipment
laparoscopic irrigation suction set standard laparoscopic equipment
Large Clip Applier Intuitive Surgical 420230 robotic instrument
Large Needle Driver Intuitive Surgical 420006 robotic instrument
Maryland Bipolar Forceps Intuitive Surgical 420172 robotic instrument
Medium-Large Clip Applier Intuitive Surgical 420327 robotic instrument
OPEN END URETERAL CATHETER Cook Incorporated 21305 heparin flushing
PDS II 6-0 (DOUBLE) Ethicon Endo-Surgery, Inc. Z1712H
Potts Scissors Intuitive Surgical 420001 robotic instrument
ProGrasp Forceps Intuitive Surgical 420093 robotic forceps
Small Clip Applier Intuitive Surgical 420003 robotic instrument
VESSEL LOOP BLUE MAXI ASPEN surgical 011012pbx
VESSEL LOOP RED MINI ASPEN surgical 011001pbx
XCEL BLADELESS TROCAR JOHNSON & JOHNSON 2B12LT standard laparoscopic equipment

Referências

  1. Wolfe, R. A., et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. New England Journal of Medicine. 341 (23), 1725-1730 (1999).
  2. Hoznek, A., et al. Robotic assisted kidney transplantation: an initial experience. Journal of Urology. 167 (4), 1604-1606 (2002).
  3. Breda, A., et al. Robotic-assisted kidney transplantation: our first case. World Journal of Urology. 34 (3), 443-447 (2016).
  4. Menon, M., et al. Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). European Urology. 65 (5), 1001-1009 (2014).
  5. Tzvetanov, I., D’Amico, G., Benedetti, E. Robotic-assisted kidney transplantation: our experience and literature review. Current Transplantation Reports. 2 (2), 122-126 (2015).
  6. Giulianotti, P., et al. Robotic transabdominal kidney transplantation in a morbidly obese patient. American Journal of Transplantation. 10 (6), 1478-1482 (2010).
  7. Oberholzer, J., et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. American Journal of Transplantation. 13 (3), 721-728 (2013).
  8. Tzvetanov, I. G., et al. Robotic kidney transplantation in the obese patient: 10-year experience from a single center. American Journal of Transplantation. 20 (2), 430-440 (2020).
  9. Garcia-Roca, R., et al. Single center experience with robotic kidney transplantation for recipients with BMI of 40 kg/m2 or greater: a comparison with the UNOS registry. Transplantation. 101 (1), 191-196 (2017).
  10. Gallioli, A., et al. Learning curve in robot-assisted kidney transplantation: results from the European Robotic Urological Society Working Group. European Urology. 78 (2), 239-247 (2020).
  11. Alberts, V. P., Idu, M. M., Legemate, D. A., Laguna Pes, M. P., Minnee, R. C. Ureterovesical anastomotic techniques for kidney transplantation: a systematic review and meta-analysis. Transplant International. 27 (6), 593-605 (2014).
  12. Modi, P., et al. Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation. 95 (1), 100-105 (2013).
  13. Oberholzer, J., et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. American Journal of Transplantation. 13 (3), 721-728 (2013).
  14. Menon, M., et al. Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). European Urology. 65 (5), 991-1000 (2014).
  15. Tsai, M. K., et al. Robot-assisted renal transplantation in the retroperitoneum. Transplant International. 27 (5), 452-457 (2014).
  16. Sood, A., et al. Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes. Transplantation. 99 (2), 316-323 (2015).
  17. Modi, P., et al. Laparoscopic transplantation following transvaginal insertion of the kidney: description of technique and outcome. American Journal of Transplantation. 15 (7), 1915-1922 (2015).
  18. Wagenaar, S., et al. Minimally invasive, laparoscopic, and robotic-assisted techniques versus open techniques for kidney transplant recipients: a systematic review. European Urology. 72 (2), 205-217 (2017).
  19. Gastrich, M. D., Barone, J., Bachmann, G., Anderson, M., Balica, A. Robotic surgery: review of the latest advances, risks, and outcomes. Journal of Robotic Surgery. 5 (2), 79-97 (2011).
  20. Modi, P., et al. Robotic assisted kidney transplantation. Indian Journal of Urology. 30 (3), 287-292 (2014).
  21. Vignolini, G., et al. The University of Florence technique for robot-assisted kidney transplantation: 3-year experience. Frontiers in Surgery. 7, 583798 (2020).
  22. Musquera, M., et al. Robot-assisted kidney transplantation: update from the European Robotic Urology Section (ERUS) series. BJU International. 127 (2), 222-228 (2021).
  23. Breda, A., et al. Robot-assisted kidney transplantation: the European experience. European Urology. 73 (2), 273-281 (2018).
  24. Siena, G., et al. Robot-assisted kidney transplantation with regional hypothermia using grafts with multiple vessels after extracorporeal vascular reconstruction: results from the European Association of Urology Robotic Urology Section Working Group. European Urology Focus. 4 (2), 175-184 (2018).
  25. Prudhomme, T., et al. Robotic-assisted kidney transplantation in obese recipients compared to non-obese recipients: the European experience. World Journal of Urology. 39 (4), 1287-1298 (2020).
  26. Vignolini, G., et al. Development of a robot-assisted kidney transplantation programme from deceased donors in a referral academic centre: technical nuances and preliminary results. BJU International. 123 (3), 474-484 (2019).
  27. Ahlawat, R., et al. Robotic kidney transplantation with regional hypothermia versus open kidney transplantation for patients with end stage renal disease: an ideal stage 2B study. Journal of Urology. 205 (2), 595-602 (2021).
check_url/pt/62220?article_type=t

Play Video

Citar este artigo
Lim, S. J., Ko, Y., Kim, D. H., Jung, J. H., Kwon, H., Kim, Y. H., Shin, S. Robot-Assisted Kidney Transplantation. J. Vis. Exp. (173), e62220, doi:10.3791/62220 (2021).

View Video