Summary

Gerichtete Induktion retinaler Organoide aus humanen pluripotenten Stammzellen

Published: April 21, 2021
doi:

Summary

Mit einer selbstorganisierenden Methode entwickeln wir ein Protokoll mit dem Zusatz von COCO, das die Bildung von Photorezeptoren signifikant erhöhen könnte.

Abstract

Die retinale Zelltransplantation ist ein vielversprechender Therapieansatz, der die Netzhautarchitektur wiederherstellen und die Sehfähigkeit der degenerierten Netzhaut stabilisieren oder sogar verbessern könnte. Dennoch steht der Fortschritt in der Zellersatztherapie derzeit vor der Herausforderung, eine handelsübliche Quelle für qualitativ hochwertige und standardisierte menschliche Netzhäute zu benötigen. Daher ist ein einfaches und stabiles Protokoll für die Experimente erforderlich. Hier entwickeln wir ein optimiertes Protokoll, basierend auf einer selbstorganisierenden Methode unter Verwendung von exogenen Molekülen und Reagenz A sowie manueller Exzision zur Erzeugung der dreidimensionalen menschlichen Netzhautorganoide (RO). Die von humanen pluripotenten Stammzellen (PSCs) abgeleiteten RO exprimieren spezifische Marker für Photorezeptoren. Mit der Zugabe von COCO, einem multifunktionalen Antagonisten, wird die Differenzierungseffizienz von Photorezeptorvorläufern und Zapfen signifikant erhöht. Die effiziente Nutzung dieses Systems, das die Vorteile von Zelllinien und Primärzellen hat, und ohne die damit verbundenen Beschaffungsprobleme, könnte konfluente Netzhautzellen, insbesondere Photorezeptoren, produzieren. Somit bietet die Differenzierung von PSCs zu RO eine optimale und biorelevante Plattform für Krankheitsmodellierung, Wirkstoffscreening und Zelltransplantation.

Introduction

Pluripotente Stammzellen (PSCs) zeichnen sich durch ihre Selbsterneuerung und die Fähigkeit aus, sich in alle Arten von Körperzellen zu differenzieren. Daher sind Organoide, die von PSCs abgeleitet sind, zu einer wichtigen Ressource in der Forschung der regenerativen Medizin geworden. Die Netzhautdegeneration ist durch den Verlust von Photorezeptoren (Stäbchen und Zapfen) und des retinalen Pigmentepithels gekennzeichnet. Der retinale Zellersatz könnte eine ermutigende Behandlung für diese Krankheit sein. Es ist jedoch nicht möglich, menschliche Netzhäute für die Erforschung und Therapie von Krankheiten zu erhalten. Daher sind retinale Organoide (ROs), die von PSCs abgeleitet sind und die mehrschichtige native Netzhautzellen effektiv und erfolgreich rekapitulieren, für die Grundlagen- und translationale Forschung von Vorteil 1,2,3. Unsere Forschung konzentriert sich auf die RO-Differenzierung, um ausreichend und qualitativ hochwertige Zellen für die Untersuchung der Netzhautdegenerationbereitzustellen 4.

Methoden zur Differenzierung von ROs entstehen kontinuierlich, wobei das Sasai-Labor 2012 eine dreidimensionale (3D) Suspensionsdifferenzierung entwickelt hat5. Wir haben den CRX-tdTomato-Tag in die menschlichen embryonalen Stammzellen (hES-Zellen) eingeführt, um die Photorezeptor-Vorläuferzellen spezifisch zu verfolgen, und modifizierten die Methode durch den Zusatz von COCO, einem multifunktionalen Antagonisten der Wnt-, TGF-β- und BMP-Signalwege6. Es wurde gezeigt, dass COCO die Differenzierungseffizienz von Photorezeptorvorläufern und Zapfen effizient verbessert 6,7.

Insgesamt haben wir durch die Modifikation der klassischen Differenzierungsmethode ein zugängliches Protokoll entwickelt, um reichlich Photorezeptorvorläufer und Zapfen aus menschlichen ROs zu gewinnen, um die mit den Photorezeptoren verbundenen Netzhauterkrankungen durch Laboruntersuchungen und für die weitere klinische Anwendung / Transplantation zu analysieren.

Protocol

Diese Studie wurde von der institutionellen Ethikkommission des Beijing Tongren Hospital, Capital Medical University, genehmigt. H9 hESCs wurden vom WiCell Research Institute gewonnen und gentechnisch zu tdTomato-markierten Zelllinien verändert. 1. Erzeugung menschlicher ROs Kultur der hESCs unter feederfreien Bedingungen.Beschichten Sie eine Vertiefung einer 6-Well-Platte mit 1 ml 0,1 mg/ml Reagenz A (Table of Materials) bei 37 °C für mindestens eine halb…

Representative Results

Die schematische Darstellung zeigt das Differenzierungsprotokoll zur Verbesserung von Vorläuferzellen mit COCO (Abbildung 1). Von PSC bis ROs können zahlreiche Details zu Ergebnisschwankungen führen. Es wird empfohlen, jeden Schritt und sogar die Katalognummer und Chargennummer jedes Mediums aufzuzeichnen, um den gesamten Vorgang zu verfolgen. Hier stellen wir Hellfeldbilder für die Tage 6, 12, 18 und 45 bereit (Abbildung 2). An T…

Discussion

Die retinale Organoiddifferenzierung ist eine wünschenswerte Methode zur Erzeugung reichlich funktionsfähiger Netzhautzellen. Die RO ist ein Verbund aus verschiedenen Netzhautzellen, wie Ganglienzellen, bipolaren Zellen und Photorezeptoren, die von pluripotenten Stammzellen in Richtung der neuronalen Netzhaut 4,5,8,9 erzeugt werden. Obwohl konfluente ROs geerntet werden könnten, ist es zeita…

Acknowledgements

Wir danken den Mitgliedern des Labors 502 für ihre technische Unterstützung und hilfreichen Kommentare zum Manuskript. Diese Arbeit wurde teilweise von der Beijing Municipal Natural Science Foundation (Z200014) und dem National Key R&D Program of China (2017YFA0105300) unterstützt.

Materials

2-mercaptoethanol Life Technologies 21985-023
COCO R&D Systems 3047-CC-050 DAN Domain family of BMP antagonists
DMEM/F-12 Gibco 10565-042
DMSO Sigma D2650
DPBS Gibco C141905005BT
EDTA Thermo 15575020
Fetal Bovine Serum (FBS), Qualified for Human Embryonic Stem Cells Biological Industry 04-002-1A
GMEM Gibco 11710-035
KnockOut Serum Replacement-Multi-Species Gibco A3181502
MEM Non-essential Amino Acid Solution (100X) sigma M7145
Pen Strep Gibco 15140-122
Primesurface 96 V-plate Sbio MS9096SZ Cell aggregation in 1.2.7
Pyruvate Sigma S8636
Reagent A BD 356231 Matrigel in 1.1.1
Reagent B StemCell 5990 mTeSR- E8 , PSCs basal medium in 1.1.2
Reagent C Gibco 12563-011 TrypLE Express in 1.2
Reagent D Roche 11284932001 DNase I , in 1.2
Retinoic acid Sigma R2625-100MG
SAG Enzo Life Science ALX-270-426-M001
Supplement 1 Life Technologies 17502-048 N-2 Supplement (100X), Liquid, supplemet in medum III
Taurine Sigma T-8691-25G
Trypsin-EDTA (0.25%), phenol red Gibco 25200056 organoids dissociation in 2.1.3
Wnt Antagonist I, IWR-1-endo – Calbiochem Sigma 681669 Wnt inhibitor
Y-27632 2HCl Selleck S1049

Referências

  1. Xie, H., et al. Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. Science Advances. 6 (6), 5247 (2020).
  2. Lu, Y. F., et al. Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Developmental Cell. 53 (4), 473-491 (2020).
  3. Cowan, C. S., et al. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell. 182 (6), 1623-1640 (2020).
  4. Jin, Z. B., et al. Stemming retinal regeneration with pluripotent stem cells. Progress in Retinal and Eye Research. 69, 38-56 (2019).
  5. Nakano, T., et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 10 (6), 771-785 (2012).
  6. Pan, D., et al. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Research and Therapy. 11 (1), 366 (2020).
  7. Zhou, S., et al. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFbeta and Wnt signaling. Development. 142 (19), 3294-3306 (2015).
  8. Deng, W. L., et al. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients. Stem Cell Reports. 10 (4), 1267-1281 (2018).
  9. Gao, M. L., et al. Patient-Specific Retinal Organoids Recapitulate Disease Features of Late-Onset Retinitis Pigmentosa. Frontiers in Cell and Developmental Biology. 8, 128 (2020).
  10. Zhang, C. J., Ma, Y., Jin, Z. B. The road to restore vision with photoreceptor regeneration. Experimental Eye Research. 202, 108283 (2020).
  11. Reichman, S., et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proceedings of the National Academy of Sciences of the U. S. A. 111 (23), 8518-8523 (2014).
  12. Kuwahara, A., et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nature Communications. 6, 6286 (2015).
check_url/pt/62298?article_type=t

Play Video

Citar este artigo
Zhang, X., Jin, Z. Directed Induction of Retinal Organoids from Human Pluripotent Stem Cells. J. Vis. Exp. (170), e62298, doi:10.3791/62298 (2021).

View Video