Summary

生产人类CRISPR工程的CAR-T细胞

Published: March 15, 2021
doi:

Summary

在这里,我们提出了一个协议,在原人类T细胞的基因编辑使用CRISPR卡斯技术来修改CAR-T细胞。

Abstract

使用心绞细胞抗原受体T细胞(CAR-T细胞)的采用细胞疗法在血液恶性肿瘤患者中已显示出显著的临床疗效,目前正在对各种实体肿瘤进行调查。CAR-T细胞通过从患者的血液中取出T细胞并设计它们来表达一种合成免疫受体来产生,该受体将T细胞重定向以识别和消除目标肿瘤细胞。CAR-T细胞的基因编辑有可能提高当前CAR-T细胞疗法的安全性,并进一步提高CAR-T细胞的功效。在这里,我们描述了人类CRISPR工程CD19定向CAR-T细胞的激活、扩展和定性方法。这包括CAR扁豆载体的转导,以及使用单导RNA(sgRNA)和Cas9内分泌酶瞄准T细胞感兴趣的基因。本协议中描述的方法可以普遍应用于除本研究所用基因以外的其他CAR结构和靶向基因。此外,本协议还讨论了gRNA设计、铅GRNA选择和靶向基因淘汰验证的策略,以可重复实现临床级人类T细胞的高效率、多重CRISPR-Cas9工程。

Introduction

奇美利安抗原受体(CAR)-T细胞疗法彻底改变了采用细胞疗法和癌症免疫疗法领域。CAR-T细胞是一种表达合成免疫受体的工程T细胞,它结合了抗原特异性单链抗体片段和来自TCRzeta链的信号域,以及对于T细胞激活和共同刺激1、2、3、4所必需且足以进行成本激励的.CAR-T细胞的制造首先提取患者自己的T细胞,然后对CAR模块进行前体内病毒转导,并扩大CAR-T细胞产品,磁珠作为人工抗原呈现细胞5。扩大的CAR-T细胞被重新注入到患者,在那里他们可以移植,消除目标肿瘤细胞,甚至持续多年后输液6,7,8。虽然CAR-T细胞治疗在B细胞恶性肿瘤中取得了显著的反应率,但固体肿瘤的临床成功受到多种因素的挑战,包括不良T细胞渗透9、免疫抑制肿瘤微环境10、抗原覆盖和特异性,以及CAR-T细胞功能障碍11、12.目前CAR-T细胞治疗的另一个限制包括使用自体T细胞。经过多轮化疗和高肿瘤负担后,CAR-T细胞的质量可能较健康捐赠者的异基因CAR-T产品差,此外还有与制造自体CAR-T细胞相关的时间和费用。CRISPR/Cas9对CAR-T细胞产品的基因编辑代表了克服目前CAR-T细胞13、14、15、16、17的局限性的新策略。

CRISPR/Cas9是一个两个组分系统,可用于哺乳动物细胞18,19的靶向基因组编辑。CRISPR相关内分泌酶Cas9可以通过与目标DNA序列20的碱基配对,诱导由小RNA引导的特定部位双链断裂。在没有修复模板的情况下,通过容易出错的非同位素端连接 (NHEJ) 通路修复双链断裂,导致帧移位突变或通过插入和删除突变 (INDELs) (INDELs)19、20、21过早停止 codons。效率、易用性、成本效益和多路复用基因组编辑能力使CRISPR/Cas9成为提高自体和异基因CAR-T细胞的功效和安全性的强大工具。此方法还可用于编辑 TCR 定向 T 单元格,方法是将 CAR 结构替换为 TCR。此外,基因CAR-T细胞,有有限的潜力,导致移植与宿主疾病也可以通过基因编辑TCR,b2m和HLA细胞位点产生。

在此协议中,我们展示了如何将 T 细胞的 CRISPR 工程与 CAR-Transgene 的病毒载体介导传递相结合,以生成基因组编辑的 CAR-T 细胞产品,提高功效和安全性。图 1显示了整个过程的示意图。利用这种方法,我们已经在原人类CAR-T细胞中展示了高效基因敲除。 图 2A 详细描述了编辑和制造 T 单元的每个步骤的时间表。还讨论了指导RNA设计和淘汰验证的策略,以便将这种方法应用于各种目标基因。

Protocol

人体T细胞是通过宾夕法尼亚大学人类免疫学核心公司采购的,该核心在良好实验室实践原则下运作,符合既定的标准操作程序和/或符合MIATA和宾夕法尼亚大学道德准则的样品接收、处理、冷冻和分析协议。 1. 伦特维拉尔病媒生产 注:病毒产品通过将包装结构(Rev、gag/pol/RRE、VSVg 和转移质粒)分离成四个单独的质粒,从而使复制缺陷,大大降低了可能导致…

Representative Results

我们在这里描述了一个基因工程T细胞的协议,可用于生成自体和异基因CAR-T细胞,以及TCR重定向T细胞。 图1详细描述了CRISPR编辑T细胞制造过程中所涉及的阶段。这个过程开始于设计对感兴趣的基因的sgRNA。一旦sgRNA被设计和合成,然后他们被用来使RNP复合物与适当的Cas蛋白。T细胞从健康的供体或患者球体中分离出来,RNP复合物通过电聚或核化来传递。编…

Discussion

在这里,我们描述了使用CRISPR Cas9技术和制造产品来进一步测试功能和功效的基因编辑CAR-T细胞的方法。上述协议已优化,用于在原发性人类T细胞中执行CRIPSR基因编辑,并结合具有幻想抗原受体的工程T细胞。此协议允许高淘汰效率,以最小的供体到捐赠者的变异性。使用CRISPR进行改造,通过消除抑制T细胞功能的受体并制造异基因CAR-T细胞,可以提高CAR-T细胞的功效和安全性。

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢宾夕法尼亚大学提供正常供体T细胞和流细胞学核心的人类免疫学核心。

Materials

4D-Nucleofactor Core Unit Lonza AAF-1002B
4D-Nucleofactor X-Unit Lonza AAF-1002X
Accuprime Pfx Supermix ThermoFisher 12344040
Beckman Optima XPN ultracentrifuge Beckman Coulter
Brilliant Violet 605 anti-human CD3 Antibody Biolegend 317322 Clone OKT3
BV711 Anti-human PD1 Biolegend Clone EH12.2H7
Cas9-Electroporation enhancers IDT 1075915
CD3/CD28 Dynabeads ThermoFisher 40203D
CD4+ T cell isolation Kit StemCell technologies 15062
CD8+ T cell isolation Kit StemCell technologies 15063
Corning 0.45 micron vacuum filter/bottle Corning 430768
Corning T150 cell culture flask Millipore Sigma CLS430825
DMSO Millipore Sigma D2650
DNAeasy Blood and Tissue Kit Qiagen 69504
DynaMag Magnet ThermoFisher 12321D
Glutamax supplement ThermoFisher 35050061
HEK293T cells ATCC CRL-3216
HEPES (1 M) ThermoFisher 15630080
huIL-15 PeproTech 200-15
huIL-7 PeproTech 200-07
Lipofectamine 2000 ThermoFisher 11668019
Nucleospin Gel and PCR cleanup Takara 740609.25
Opti-MEM ThermoFisher 31985062
P3 Primary cell 4D-nucleofactor X Kit L Lonza V4XP-3024
Penicilin-Streptomycin-Glutamine ThermoFisher 10378016
pTRPE expression Plasmid in house
Rabbit Anti-Mouse FMC63 scFv Monoclonal Antibody, (R19M), PE CytoArt 200105
RPMI1640 ThermoFisher 12633012
sgRNA IDT
Spy Fi Cas9 Aldevron 9214
Ultracentrifuge tubes Beckman Coulter 326823
Viral packaging mix in house
X-Vivo-15 Media Lonza BE02-060F

Referências

  1. Kowolik, C. M., et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Pesquisa do Câncer. 66 (22), 10995-11004 (2006).
  2. Krause, A., et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. The Journal of Experimental Medicine. 188 (4), 619-626 (1998).
  3. Kuwana, Y., et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochemical and biophysical research Communications. 149 (3), 960-968 (1987).
  4. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I., Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature Biotechnology. 20 (1), 70-75 (2002).
  5. Levine, B. L., Miskin, J., Wonnacott, K., Keir, C. Global manufacturing of CAR-T cell therapy. Molecular Therapy-Methods & Clinical Development. 4, 92-101 (2017).
  6. Neelapu, S. S., et al. Axicabtagene ciloleucel CAR-T-cell therapy in refractory large B-cell lymphoma. New England Journal of Medicine. 377 (26), 2531-2544 (2017).
  7. Porter, D. L., et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine. 7 (303), 139 (2015).
  8. Maude, S. L., et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine. 371 (16), 1507-1517 (2014).
  9. Melero, I., Rouzaut, A., Motz, G. T., Coukos, G. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discovery. 4 (5), 522-526 (2014).
  10. Mohammed, S., et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Molecular Therapy. 25 (1), 249-258 (2017).
  11. Moon, E. K., et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clinical Cancer Research. 20 (16), 4262-4273 (2014).
  12. Beatty, G. L., O’Hara, M. Chimeric antigen receptor-modified T cells for the treatment of solid tumors: defining the challenges and next steps. Pharmacology & Therapeutics. 166, 30-39 (2016).
  13. Stadtmauer, E. A., et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 367 (6481), (2020).
  14. MacLeod, D. T., et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR-T cells. Molecular Therapy. 25 (4), 949-961 (2017).
  15. Ren, J., et al. Multiplex genome editing to generate universal CAR-T cells resistant to PD1 inhibition. Clinical Cancer Research. 23 (9), 2255-2266 (2017).
  16. Ureña-Bailén, G., et al. CRISPR/Cas9 technology: towards a new generation of improved CAR-T cells for anticancer therapies. Briefings in Functional Genomics. 19 (3), 191-200 (2020).
  17. Li, C., Mei, H., Hu, Y. Applications and explorations of CRISPR/Cas9 in CAR-T-cell therapy. Briefings in Functional Genomics. 19 (3), 175-182 (2020).
  18. Ran, F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 8 (11), 2281-2308 (2013).
  19. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  20. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337 (6096), 816-821 (2012).
  21. Jinek, M., et al. RNA-programmed genome editing in human cells. Elife. 2, 00471 (2013).
  22. Schluns, K. S., Kieper, W. C., Jameson, S. C., Lefrançois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunology. 1 (5), 426-432 (2000).
  23. Prlic, M., Lefrancois, L., Jameson, S. C. Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. The Journal of Experimental Medicine. 195 (12), 49-52 (2002).
  24. Zhou, J., et al. Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects. Protein & Cell. 10 (10), 764-769 (2019).
  25. Hultquist, J. F., et al. CRISPR-Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV-host factor interactions. Nature Protocols. 14 (1), 1-27 (2019).
  26. Brinkman, E. K., Chen, T., Amendola, M., van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research. 42 (22), 168 (2014).
check_url/pt/62299?article_type=t

Play Video

Citar este artigo
Agarwal, S., Wellhausen, N., Levine, B. L., June, C. H. Production of Human CRISPR-Engineered CAR-T Cells. J. Vis. Exp. (169), e62299, doi:10.3791/62299 (2021).

View Video