Summary

Vurdering af funktionelle målinger af skeletmuskulatursundhed i humane skeletmuskulaturmikrotisser

Published: February 18, 2021
doi:

Summary

Dette manuskript beskriver en detaljeret protokol til fremstilling af arrays af 3D menneskelige skeletmuskulaturmikrotiss og minimalt invasive downstream in situ-analyser af funktion, herunder kontraktilkraft og calciumhåndteringsanalyser.

Abstract

Tre-dimensionelle (3D) in vitro modeller af skeletmuskulatur er et værdifuldt fremskridt i biomedicinsk forskning, da de giver mulighed for at studere skeletmuskulatur reformation og funktion i et skalerbart format, der er modtagelige for eksperimentelle manipulationer. 3D-muskelkultursystemer er ønskelige, da de gør det muligt for forskere at studere skeletmuskulatur ex vivo i forbindelse med menneskelige celler. 3D in vitro modeller nøje efterligne aspekter af den indfødte vævsstruktur af voksne skeletmuskulatur. Men deres universelle anvendelse er begrænset af tilgængeligheden af platforme, der er enkle at fremstille, omkostninger og brugervenlige, og giver relativt store mængder af human skelet muskelvæv. Da skeletmuskulaturen spiller en vigtig funktionel rolle, der er svækket over tid i mange sygdomstilstande, er en eksperimentel platform for mikrotissuestudier mest praktisk, når minimalt invasive calciumtransient- og kontraktile kraftmålinger kan udføres direkte inden for selve platformen. I denne protokol beskrives fremstillingen af en 96-velkendt platform kendt som ‘MyoTACTIC’ og en masseproduktion af 3D-humane skeletmuskulaturmikrotiss (hMMT’er). Derudover rapporteres metoderne til en minimalt invasiv anvendelse af elektrisk stimulation, der muliggør gentagne målinger af skeletmuskulaturkraft og calciumhåndtering af hver mikrotissue over tid.

Introduction

Skeletmuskulatur er en af de mest rigelige væv i den menneskelige krop og understøtter centrale kropsfunktioner såsom bevægelse, varme homøostase og stofskifte1. Historisk set er dyremodeller og todimensionelle (2D) cellekultursystemer blevet brugt til at studere biologiske processer og sygdomspatogenese samt til test af farmakologiske forbindelser til behandling af skeletmuskulatursygdomme2,3. Mens dyremodeller i høj grad har forbedret vores viden om skeletmuskulatur i sundhed og sygdom, er deres translationelle virkning blevet hæmmet af høje omkostninger, etiske overvejelser og interspecies forskelle2,4. Ved at henvende sig til menneskelige cellebaserede systemer til at studere skeletmuskulatur er 2D-cellekultursystemer gunstige på grund af deres enkelhed. Der er dog en begrænsning. Dette format undlader ofte at generobre de cellecelle- og celle-ekstracellulære matrixinteraktioner, der forekommer naturligt i kroppen5,6. I løbet af de sidste mange år har tredimensionelle (3D) skeletmuskulaturmodeller vist sig som et stærkt alternativ til hele dyremodeller og konventionelle 2D-kultursystemer ved at tillade modellering af fysiologisk og patologisk relevante processer ex vivo7,8. Faktisk har en overflod af undersøgelser rapporteret strategier til at modellere menneskelige skeletmuskulatur i et bioartificialt 3D-kulturformat1. En begrænsning for mange af disse undersøgelser er, at aktiv kraft kvantificeres efter fjernelse af muskelvæv fra kulturplatformene og tilknytningen til en krafttransducer, som er destruktiv og dermed begrænset til at fungere som en endpoint assay9,10,11,12,13,14,15,16,17,18 ,19,20,21. Andre har designet kultursystemer, der giver mulighed for ikke-invasive metoder til måling af aktiv kraft, men ikke alle er modtagelige for molekyletestapplikationer med højt indhold7,8,9,10,14,18,22,23,24,25,26,27,28 ,29.

Denne protokol beskriver en detaljeret metode til fremstilling af humane muskelmikrotiss (hMMTs) i skeletmuskulaturen (Myo) microTissue Array deviCe To Investigate forCe (MyoTACTIC) platform; en 96 brønd plade enhed, der understøtter bulk produktion af 3D skeletmuskulatur microtissues30. MyoTACTIC pladefremstillingsmetoden muliggør generering af en 96 brøndpolylsiloxan (PDMS) kulturplade og alle tilsvarende brøndfunktioner i et enkelt støbetrin, hvorved hver brønd kræver et relativt lille antal celler til mikrotissuedannelse. Microtissues dannet i MyoTACTIC indeholder justeret, striated, og multinukleated myotubes, der er reproducerbare fra godt til brønd af enheden, og ved modning, kan reagere på kemiske og elektriske stimuli in situ30. Heri, teknikken til at fremstille en PDMS MyoTACTIC kultur plade enhed fra en polyurethan (PU) replika, en optimeret metode til at gennemføre udødeliggjorte menneskelige myogene stamfader celler til at fremstille hMMTs, og den funktionelle vurdering af manipuleret hMMT kraft generation og calcium håndtering egenskaber er skitseret og diskuteret.

Protocol

1. PDMS MyoTACTIC plade fabrikation BEMÆRK: PDMS MyoTACTIC plade fabrikation kræver en PU negativ skimmel, som kan fremstilles som tidligere beskrevet30. Den computerstøttede design (CAD) SolidWorks-fil til MyoTACTIC-pladedesignet er blevet gjort tilgængeligt på GitHub (https://github.com/gilbertlabcode/MyoTACTIC-SolidWork-CAD-file). Forbered ~ 110 g PDMS polymeropløsning i en engangsplastkop ved et 1:15-forhold mellem monomer og hærdningsmiddel ved hj?…

Representative Results

Beskrevet heri er metoder til at kaste en 96-godt PDMS-baserede MyoTACTIC kultur platform fra en PU skimmel, at fremstille arrays af hMMT replika væv, og til at analysere to aspekter af hMMT funktion inden for kultur enhed-kraft generation og calcium håndtering. Figur 1 giver et skematisk overblik over forberedelsen af myoTACTIC kultur brønde før hMMT såning. PDMS er en meget anvendt silikonebaseret polymer, der let kan formes til at skabe komplekse enheder32. En…

Discussion

Dette manuskript beskriver metoder til at fremstille og analysere en 3D hMMT kulturmodel, der kan anvendes til undersøgelser af grundlæggende muskelbiologi, sygdom modellering, eller for kandidat molekyle test. MyoTACTIC-platformen er omkostningsvenlig, nem at fremstille og kræver et relativt lille antal celler til at producere skeletmuskulaturmikrotiss. hMMTs dannet inden for MyoTACTIC kulturplatformen består af justerede, flerkernede og striated myotubes og reagerer på elektriske stimuli ved at indlede calciumtran…

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi vil gerne takke Mohammad Afshar, Haben Abraha, Mohsen Afshar-Bakooshli og Sadegh Davoudi for at have bidraget til opfindelsen af myoTACTIC-kulturplatformen og for at etablere de fremstillings- og analysemetoder, der er beskrevet heri. HL modtaget støtte fra en Naturvidenskab og Engineering Research Council (NSERC) Training Program i Organ-on-a-Chip Engineering and Entrepreneurship Scholarship og en University of Toronto Wildcat graduate stipendier. PMG er Canada Research Chair i Endogenous Repair og modtog støtte til denne undersøgelse fra Ontario Institute for Regenerativ Medicin, Stem Cell Network, og fra Medicine by Design, en Canada First Research Excellence Program. Skemadiagrammer blev oprettet med BioRender.com.

Materials

0.9% Saline Solution, Sterile House Brand 1010 10 mL aliquots of the solution are made and stored at 4°C
25G Needle BD, Medstore, University of Toronto 2548-CABD305127
6-Aminocaproic Acid, ≥99% (titration), Powder Sigma – Aldrich A2504-100G A 50 mg / mL stock solution is generated by dissolving 5 mg of 6-aminocaproic acid powder in 100 mL of autoclaved, distilled water. The solution is vaccum filtered and 10 mL aliquots are stored at 4°C
6.35 mm ID Tubing VWR 60985-528
AB1167 Myoblast Cell Line Institut de Myologie (Paris, France)
Arbitrary Waveform Generator Rigol DG1022Z
Basement Membrane Extract (Geltrex) Thermo Fisher Scientific A14132-02 Stored as aliquots of 50 µL or 100 µL at -80°C
Benchtop Vacuum Chamber Sigma – Aldrich D2672
BNC to Aligator Clip Cable Ordered from Amazon
Culture Plastics Sarstedt Includes culture plates, serological pipettes, etc
Dimethyl Sulfoxide Sigma – Aldrich D8418-250ML
DPBS, Powder, No Calcium, No Magnesium Thermo Fisher Scientific 21600069
Dulbecco's Modified Eagle Medium (DMEM) (1X) Gibco 11995-065 This is a high glucose DMEM with L-glutamine and sodium pyruvate
Fetal Bovine Serum Fisher Scientific 10437028
Fibrinogen from Bovine Plasma Sigma – Aldrich F8630-5G Aliquots ranging from 7 – 10 mg of fibrinogen powder are made and stored at -20°C
Filtropur Syringe Filter, 0.22um Pore Size Sarstedt 83.1826.001
Horse Serum Gibco 16050-122
Human Recombinant Insulin Sigma – Aldrich 91077C Stock solution is 100X and made by dissolving 1 mg of human recombinant insulin in 1 mL of DMEM and 1 µL of NaOH 10N. Solution is filtered and stored as 1 mL aliquots at 4°C
Image Acquisition Software Olympus cellSens Dimension
Image Processing Software National Institutes of Health ImageJ
Isotemp Oven Thermo Fisher Scientific 201
Microscope Olympus IX83
Microscope – Camera Mount Labcam Labcam for iPhone Ordered from Amazon
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122
Plastic Disposable Syringes, 1cc BD 2606-309659
Plastic Disposable Syringes, 50cc BD 2612-309653
Pluronic F-127, Powder, BioReagent Sigma – Aldrich P2443-250G A 5% stock solution of pluronic acid is made by dissolving 5 g of pluronic acid powder in 100 mL of chilled, autoclaved, distilled water. The solution is vaccum filtered and 10 mL aliquots are stored at 4°C
Polydimethylsiloxane (Sylgard 184 Silicone Elastomer Kit) Dow 4019862 Kits are also available at Thermo Fisher Scientific, Sigma – Aldrich, etc.
Polyurethane Negative Mold In House
Release Agent Mann Release Technologies 200
Rotary Vane Vacuum Pump Edwards A65401906
Scalpel Almedic, Medstore, University of Toronto 2586-M36-0100
Single Edge Razor Blade VWR 55411-050
Skeletal Muscle Cell Basal Medium Promocell C-23260 30 mL aliquotes are generated and at stored at 4°C.
Skeletal Muscle Cell Growth Medium (Ready-to-use) Promocell C-23060 42 mL aliquots are generated and stored at 4°C.
Smartphone (iPhone) Apple SE
Standard Duty Dry Vacuum Pump Welch 2546B-01
Sterilization Bag Alliance 211-SCM2
Thimble Igege Ordered from Amazon
Thrombin from human plasma Sigma – Aldrich T6884-250UN 100 units of thrombin is dissolved in 1 mL of a 0.1% BSA solution. 10 µL aliquots are prepared and stored at – 20°C.
Tin coated copper wire Arco B8871K48 Ordered from Amazon
Trypan Blue Solution, 0.4% Thermo Scientific 15250061
Trypsin-EDTA, 0.25% Thermo FIsher Scientific 25200072
Vacuum Chamber 2 SP Bel-Art F42027-0000

Referências

  1. Frontera, W. R., Ochala, J. Skeletal Muscle: A brief review of structure and function. Calcified Tissue International. 96 (3), 183-195 (2015).
  2. McGreevy, J. W., Hakim, C. H., McIntosh, M. A., Duan, D. Animal models of Duchenne muscular dystrophy: From basic mechanisms to gene therapy. DMM Disease Models and Mechanisms. 8 (3), 195-213 (2015).
  3. Young, J., et al. MyoScreen, a high-throughput phenotypic screening platform enabling muscle drug discovery. SLAS Discovery. 23 (8), 790-806 (2018).
  4. DiMasi, J. A., Hansen, R. W., Grabowski, H. G. The price of innovation: New estimates of drug development costs. Journal of Health Economics. 22 (2), 151-185 (2003).
  5. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology. 8 (10), 839-845 (2007).
  6. Duval, K., et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 32 (4), 266-277 (2017).
  7. Vandenburgh, H., et al. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle and Nerve. 37 (4), 438-447 (2008).
  8. Vandenburgh, H., et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. The FASEB Journal. 23 (10), 3325-3334 (2009).
  9. Kim, J. H., et al. 3D bioprinted human skeletal muscle constructs for muscle function restoration. Scientific Reports. 8 (1), 12307 (2018).
  10. Takahashi, H., Shimizu, T., Okano, T. Engineered human contractile myofiber sheets as a platform for studies of skeletal muscle physiology. Scientific Reports. 8 (1), 1-11 (2018).
  11. Afshar Bakooshli, M., et al. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. eLife. 8, 1-29 (2019).
  12. Madden, L., Juhas, M., Kraus, W. E., Truskey, G. A., Bursac, N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife. 2015 (4), 3-5 (2015).
  13. Urciuolo, A., et al. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale. PLoS One. 15 (5), 0232081 (2020).
  14. Cvetkovic, C., Rich, M. H., Raman, R., Kong, H., Bashir, R. A 3D-printed platform for modular neuromuscular motor units. Microsystems & Nanoengineering. 3 (1), 1-9 (2017).
  15. Shima, A., Morimoto, Y., Sweeney, H. L., Takeuchi, S. Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Experimental Cell Research. 370 (1), 168-173 (2018).
  16. Capel, A. J., et al. Scalable 3D printed molds for human tissue engineered skeletal muscle. Frontiers in Bioengineering and Biotechnology. 7, 20 (2019).
  17. Gholobova, D., et al. Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. Scientific Reports. 8 (1), 1-14 (2018).
  18. Osaki, T., Uzel, S. G. M., Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Science Advances. 4 (10), 5847 (2018).
  19. Rao, L., Qian, Y., Khodabukus, A., Ribar, T., Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nature Communications. 9 (1), (2018).
  20. Maffioletti, S. M., et al. Three-dimensional human iPSC-derived artificial skeletal muscles model muscular dystrophies and enable multilineage tissue engineering. Cell Reports. 23 (3), 899-908 (2018).
  21. Chal, J., et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nature Protocols. 11 (10), 1833-1850 (2016).
  22. Khodabukus, A., et al. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials. 198, 259-269 (2019).
  23. Nagashima, T., et al. In vitro model of human skeletal muscle tissues with contractility fabricated by immortalized human myogenic cells. Advanced Biosystems. , 2000121 (2020).
  24. Mills, R. J., et al. Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials. 198, 217-227 (2019).
  25. Legant, W. R., et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proceedings of the National Academy of Sciences of the United States of America. 106 (25), 10097-10102 (2009).
  26. Prüller, J., Mannhardt, I., Eschenhagen, T., Zammit, P. S., Figeac, N. Satellite cells delivered in their niche efficiently generate functional myotubes in three-dimensional cell culture. PLOS One. 13 (9), 0202574 (2018).
  27. Sakar, M. S., et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab on a Chip. 12 (23), 4976-4985 (2012).
  28. Zhang, X., et al. A system to monitor statin-induced myopathy in individual engineered skeletal muscle myobundles. Lab on a Chip. 18 (18), 2787-2796 (2018).
  29. Rajabian, N., et al. Bioengineered skeletal muscle as a model of muscle aging and regeneration. Tissue Engineering Part A. 27 (1-2), 74-86 (2020).
  30. Afshar, M. E., et al. A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength. Scientific Reports. 10 (1), 6918 (2020).
  31. Mamchaoui, K., et al. Immortalized pathological human myoblasts: Towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle. 1 (1), 34 (2011).
  32. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., Fleming, R. M. T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics. 63, 218-231 (2015).
  33. Chen, T. W., et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499 (7458), 295-300 (2013).
  34. Bakooshli, M. A., et al. A 3D model of human skeletal muscle innervated with stem cell-derived motor neurons enables epsilon-subunit targeted myasthenic syndrome studies. BioRxiv. , 275545 (2018).
  35. Vandenburgh, H. H., Karlisch, P., Farr, L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. Vitro Cellular & Developmental Biology. 24 (3), 166-174 (1988).
  36. Bell, E., Ivarsson, B., Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Sciences of the United States of America. 76 (3), 1274-1278 (1979).
  37. Hinds, S., Bian, W., Dennis, R. G., Bursac, N. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials. 32 (14), 3575-3583 (2011).
check_url/pt/62307?article_type=t

Play Video

Citar este artigo
Lad, H., Musgrave, B., Ebrahimi, M., Gilbert, P. M. Assessing Functional Metrics of Skeletal Muscle Health in Human Skeletal Muscle Microtissues. J. Vis. Exp. (168), e62307, doi:10.3791/62307 (2021).

View Video