Summary

用利甘德分析(DRACALA)的微分径向毛细管作用识别小配体的结合蛋白

Published: March 19, 2021
doi:

Summary

利甘德分析(DRaCALA)的微分径向毛细管作用可用于使用ORFeome库识别生物体的小配体结合蛋白。

Abstract

在过去的十年里,细菌生理学中对小信号分子的理解取得了巨大的进步。特别是,在模型生物体中系统地识别和研究了几个核苷酸衍生的二次信使(NSM)的目标蛋白质。这些成就主要归功于一些新技术的发展,包括捕获复合技术和配体检测(DRaCALA)的微分径向毛细管作用,这些技术被用来系统地识别这些小分子的目标蛋白质。本文描述了使用NSM,瓜诺辛五角星和四磷酸盐(p)pppGpp,作为DRACALA技术的例子和视频演示。使用DRaCALA,在模型有机体 Escherichia大肠杆菌 K-12中发现了20种已知蛋白质中的9种,以及12种新靶蛋白(p)pppGpp,显示了这种测定的力量。原则上,DRACALA可用于研究可标有放射性同位素或荧光染料的小配体。这里讨论了 DRACALA 的关键步骤、优点和缺点,以便进一步应用此技术。

Introduction

细菌使用几个小信号分子来适应不断变化的环境1,2。例如,自动诱导剂,N-乙酰异丙胺乳酮及其改良的寡肽,调解细胞间细菌之间的交流,以协调人群行为,这种现象被称为法定人数感应2。另一组小信号分子是NSM,包括广泛研究的环状腺苷单磷酸盐(cAMP)、环二聚氨酸、环状二磷酸盐(环二磷酸盐)和瓜诺辛五磷酸盐和四磷酸盐(p)pppGpp1。细菌产生这些NSM作为对各种不同压力条件的反应。一旦产生,这些分子结合到他们的目标蛋白质,并调节几个不同的生理和代谢途径,以应付遇到的压力,提高细菌的生存能力。因此,识别目标蛋白是破译这些小分子分子功能的必然前提。

在过去的十年里,对这些小信号分子的了解激增,这主要是因为一些技术创新揭示了这些小分子的目标蛋白质。其中包括捕获复合技术3,4,5,和配体检测(DRaCALA)6的微分径向毛细管作用,本文将讨论。

DRaCALA 由文森特·李和同事于 2011年 6 月发明,它部署了硝基纤维素膜的能力,以微分隔离无蛋白质和蛋白质结合的配体。蛋白质等分子不能扩散到亚硝基纤维素膜上,而小配体(如NSM)能够扩散。通过将NSM(例如ppGpp)与要测试的蛋白质混合,并在膜上发现它们,可以预期两种情况(图1):如果(p)ppppp与蛋白质结合,放射性标签(p)pppGpp将由蛋白质保留在点的中心,并且不会向外扩散,从而给出一个强烈的小点(, 强烈的放射性信号)在磷构体下。然而,如果(p)pppGpp不与蛋白质结合,它将自由向外扩散,产生一个具有均匀背景放射性信号的大点。

此外,如果蛋白质存在足够的量,DRACALA可以检测小分子和整个细胞解剖中未纯化蛋白质之间的相互作用。这种简单性允许使用 DRACALA 使用 ORFeome 表达库快速识别蛋白质靶点。事实上,使用 DRaCALA 系统地识别了 cAMP7、环形二安培8、环形二聚氰化物9、10和 (p) pppGpp 11、12、13 的目标蛋白质。本视频文章以 (p) ppGpp 为例,演示和描述成功进行 DRACALA 筛查的关键步骤和考虑因素。值得注意的是,强烈建议在执行 DRACALA 之前,结合本文阅读对 DRACALA14进行更详尽的描述。

Figure 1
图1:德拉卡拉(A)示意图分析原理。有关详细信息,请参阅文本。(B) 约束分数的量化和计算。有关详细信息,请参阅文本。简言之,DRaCALA 点将通过绘制两个圆圈来分析,这些圆圈将整个点和内部暗点(由于测试蛋白质的结合而保留的 (p)pPpGpp)。特定的结合信号是减去非特定背景信号(按A1×计算(S 2-S 1)/(A2-A1)后内(S1)的放射性信号。结合分数是除以总放射性信号 (S2) 的特定绑定信号。缩写: Dracala = 利甘德分析的差速径向毛细管操作;(p) ppgpp = 瓜诺辛五角星和四磷酸盐;RT = 室温。请单击此处查看此图的较大版本。

Protocol

1. 准备整个细胞解解剂 接种 大肠杆菌 K-12 ASKA ORFeome系列菌株15 到1.5mL莱索根肉汤(LB),含有25微克/mL氯霉素在96井深井板。在 30 °C 下生长 18 小时(O/N),在 160 rpm 时摇晃。第二天,在O/N培养物中加入异丙基β-d-1-硫高拉托平旁(IPTG)(最终0.5mM),以在30°C为6h时诱导蛋白质表达。 颗粒细胞在 500 x g 为 10 分钟。将颗粒冻结在 -80 °C 下,直到使用。要…

Representative Results

遵循上述协议通常会产生两种类型的结果(图3)。 图 3A显示大多数油井的背景绑定信号相对较低的板(绑定分数< 0.025)。来自油井 H3 的正绑定信号给出的绑定分数为 ±0.35,远远高于其他油井的绑定分数。即使没有量化,H3 也非常显著,表明 H3 中表达的目标蛋白质与 pppGpp、ppGpp 或两者兼有。事实上,在H3井中过度表达的蛋白质是…

Discussion

进行 DRACALA 筛查的关键步骤之一是获得良好的全细胞解解。首先,测试的蛋白质应大量和可溶性地生产。其次,细胞的裂解应完成,裂解剂的粘度必须极小。酶的加入和三个冷冻-解冻周期的使用往往足以完全解冻细胞。然而,释放的染色体DNA使溶质粘稠,并产生高背景结合信号,导致误报如图3B,C所示。为了减轻这种情况,可以使用来自S.马塞森的Dnase 1?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到向YAZ提供的NNF项目赠款(NNF19OC0058331)以及根据玛丽·斯考多夫斯卡-居里赠款协议(No 801199)向MLS提供的欧洲联盟地平线2020研究和创新方案的支持。

Equation 1

Materials

32P-α-GTP Perkinelmer BLU006X250UC
96 x pin tool V&P Scientific VP 404 96 Bolt Replicator, on 9 mm centers, 4.2 mm Bolt Diameter, 24 mm long
96-well V-bottom microtiter plate Sterilin MIC9004 Sterilin Microplate V Well 611V96
Agar OXOID – Thermo Fisher LP0011 Agar no. 1
ASKA collection strain NBRP, SHIGEN, JAPAN Ref: DNA Research, Volume 12, Issue 5, 2005, Pages 291–299. https://doi.org/10.1093/dnares/dsi012
Benzonase SIGMA E1014-25KU genetically engineered endonuclease from Serratia marcescens
Bradford Protein Assay Dye Bio-Rad 5000006 Reagent Concentrate
DMSO SIGMA D8418 ≥99.9%
DNase 1 SIGMA DN25-1G
gel filtration10x300 column GE Healthcare 28990944 contains 20% ethanol as preservative
Glycerol PanReac AppliChem 122329.1214 Glycerol 87% for analysis
Hypercassette Amersham RPN 11647 20 x 40 cm
Imidazole SIGMA 56750 puriss. p.a., ≥ 99.5% (GC)
IP Storage Phosphor Screen FUJIFILM 28956474 BAS-MS 2040 20x 40 cm
Isopropyl β-d-1-thiogalactopyranoside (IPTG) SIGMA I6758 Isopropyl β-D-thiogalactoside
Lysogeny Broth (LB) Invitrogen – Thermo Fisher 12795027 Miller's LB Broth Base
Lysozyme SIGMA L4949 from chicken egg white; BioUltra, lyophilized powder, ≥98%
MgCl2 (Magnesium chloride) SIGMA 208337
MilliQ water ultrapure water
multichannel pipette Thermo Scientific 4661110 F1 – Clip Tip; 1-10 ul, 8 x channels
NaCl VWR Chemicals 27810 AnalaR NORMAPUR, ACS, Reag. Ph. Eur.
Ni-NTA Agarose Qiagen 30230
Nitrocellulose Blotting Membrane Amersham Protran 10600003 Premium 0.45 um 300 mm x 4 m
PBS OXOID – Thermo Fisher BR0014G Phosphate buffered saline (Dulbecco A), Tablets
PEG3350 (Polyethylene glycol 3350) SIGMA 202444
phenylmethylsulfonyl fluoride (PMSF) SIGMA 93482 Phenylmethanesulfonyl fluoride solution – 0.1 M in ethanol (T)
Phosphor-imager GE Healthcare 28955809 Typhoon FLA-7000 Phosphor-imager
Pipette Tips, filtered Thermo Scientific 94410040 ClipTip 12.5 μl nonsterile
Poly-Prep Chromatography column Bio-Rad 7311550 polypropylene chromatography column
Protease inhibitor Mini Pierce A32955 Tablets, EDTA-free
screw cap tube Thermo Scientific 3488 Microcentifuge Tubes, 2.0 ml with screw cap, nonsterile
SLS 96-deep Well plates Greiner 780285 MASTERBLOCK, 2 ML, PP, V-Bottom, Natural
spin column Millipore UFC500396 Amicon Ultra -0.5 ml Centrifugal Filters
Thermomixer Eppendorf 5382000015 Thermomixer C
TLC plate (PEI-cellulose F TLC plates) Merck Millipore 105579 DC PEI-cellulose F (20 x 20 cm)
Tris SIGMA BP152 Tris Base for Molecular Biology
Tween 20 SIGMA P1379 viscous non-ionic detergent
β-mercaptoethanol SIGMA M3148 99% (GC/titration)

Referências

  1. Kalia, D., et al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chemical Society Reviews. 42 (1), 305-341 (2013).
  2. Camilli, A., Bassler, B. L. Bacterial small-molecule signaling pathways. Science. 311 (5764), 1113-1116 (2006).
  3. Luo, Y., et al. The cAMP capture compound mass spectrometry as a novel tool for targeting cAMP-binding proteins: from protein kinase A to potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channels. Molecular & Cellular Proteomics. 8 (12), 2843-2856 (2009).
  4. Nesper, J., Reinders, A., Glatter, T., Schmidt, A., Jenal, U. A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. Journal of Proteomics. 75 (15), 4874-4878 (2012).
  5. Laventie, B. J., et al. Capture compound mass spectrometry–a powerful tool to identify novel c-di-GMP effector proteins. Journal of Visual Experiments. (97), e51404 (2015).
  6. Roelofs, K. G., Wang, J., Sintim, H. O., Lee, V. T. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proceedings of the National Academy of Sciences of the United States of America. 108 (37), 15528-15533 (2011).
  7. Zhang, Y., et al. Evolutionary adaptation of the essential tRNA methyltransferase TrmD to the signaling molecule 3 ‘,5 ‘-cAMP in bacteria. Journal of Biological Chemistry. 292 (1), 313-327 (2017).
  8. Corrigan, R. M., et al. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences of the United States of America. 110 (22), 9084-9089 (2013).
  9. Roelofs, K. G., et al. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLoS Pathogen. 11 (10), 1005232 (2015).
  10. Fang, X., et al. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Molecular Microbiology. 93 (3), 439-452 (2014).
  11. Corrigan, R. M., Bellows, L. E., Wood, A., Grundling, A. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America. 113 (12), 1710-1719 (2016).
  12. Zhang, Y., Zbornikova, E., Rejman, D., Gerdes, K. Novel (p)ppGpp binding and metabolizing proteins of Escherichia coli. Mbio. 9 (2), 02188 (2018).
  13. Yang, J., et al. The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p) ppGpp. Nature Communications. 11 (1), 5388 (2020).
  14. Orr, M. W., Lee, V. T. Differential radial capillary action of ligand assay (DRaCALA) for high-throughput detection of protein-metabolite interactions in bacteria. Methods in Molecular Biology. 1535, 25-41 (2017).
  15. Kitagawa, M., et al. Complete set of ORF clones of Escherichia coli ASKA library (A complete Set of E. coli K-12 ORF archive): Unique resources for biological research. DNA Research. 12 (5), 291-299 (2005).
  16. Hochstadt-Ozer, J., Cashel, M. The regulation of purine utilization in bacteria. V. Inhibition of purine phosphoribosyltransferase activities and purine uptake in isolated membrane vesicles by guanosine tetraphosphate. Journal of Biological Chemistry. 247 (21), 7067-7072 (1972).
  17. Zhang, Y. E., et al. p)ppGpp regulates a bacterial nucleosidase by an allosteric two-domain switch. Molecular Cell. 74 (6), 1239-1249 (2019).
  18. Wang, B., et al. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nature Chemical Biology. 15 (2), 141-150 (2019).

Play Video

Citar este artigo
Schicketanz, M. L., Długosz, P., Zhang, Y. E. Identifying the Binding Proteins of Small Ligands with the Differential Radial Capillary Action of Ligand Assay (DRaCALA). J. Vis. Exp. (169), e62331, doi:10.3791/62331 (2021).

View Video