Summary

血源性内皮细胞与人多能干细胞的定向分化

Published: March 31, 2021
doi:

Summary

这里介绍的是在大约 1 周内从人多能干细胞定向分化的血源性内皮细胞的简单方案。

Abstract

血管普遍分布在身体的所有组织中,并执行不同的功能。因此,从人多能干细胞衍生出排列血管腔的成熟血管内皮细胞对于多种组织工程和再生应用至关重要。在体内,原始内皮细胞来源于中胚层谱系,并针对特定的亚型,包括动脉、静脉、毛细血管、血源性和淋巴管。血源性内皮细胞特别令人感兴趣,因为在发育过程中,它们会产生造血干细胞和祖细胞,然后在整个生命中产生所有血系。因此,创建一个在体外产生血源性内皮细胞的系统将为研究内皮到造血的转变提供机会,并可能导致人类血液制品的离体生产和减少对人类供体的依赖。虽然存在几种用于衍生祖细胞和原始内皮细胞的方案,但尚未描述从人类干细胞中产生特征明确的血源性内皮细胞。本文提出了一种在大约1周内从人胚胎干细胞衍生血源性内皮细胞的方法:分化方案,响应GSK3β抑制剂(CHIR99021)形成的原始条纹细胞,然后由bFGF介导的中胚层谱系诱导,然后是BMP4和VEGF-A促进的原始内皮细胞发育,最后是视黄酸诱导的血源性内皮细胞规格。该协议产生明确定义的血源性内皮细胞群,可用于进一步了解其分子调控和内皮到造血的转变,这有可能应用于下游治疗应用。

Introduction

内皮细胞(ECs)是一个异质细胞群,在整个人体和工程组织中执行多种功能。除了支持和调节其他细胞类型(即心肌细胞1,成骨细胞2)外,这些功能还包括在血液和组织之间形成选择性屏障并协助组织形成3。成熟EC在正常发育过程中的分化需要多样化的信号通路。原始 EC 来源于中胚层祖细胞,然后针对成熟的动脉、静脉、毛细血管和淋巴表型4 进行指定。此外,胚胎外卵黄囊和胚胎主动脉-性腺-中胚层(AGM)区域中的一小部分EC也被指定为血源性EC,其产生造血干细胞和祖细胞(HSPC)迁移到胎儿肝脏和胎儿骨髓,在那里它们在出生后保留并在整个生命中产生所有血细胞类型4。EC表型的多样性对于所有组织发育和维护都是必不可少的。

因此,EC及其衍生物是旨在建模和阐明人类发育和/或疾病以及再生医学和组织工程应用机制的研究的关键组成部分5678然而,这些类型研究的主要局限性是缺乏所需数量的初级人类ECs。据估计,大多数治疗应用至少需要 3 x 108 个 EC6。为了解决这个问题,已经提出了使用人类胚胎干细胞(hESCs)和人诱导多能干细胞(hiPSCs),因为它们具有不同的谱系潜力和产生大量后代的能力69

事实上,源自hESC或hiPSC的细胞的有用性已经在多项专注于疾病建模和药物筛选的研究中得到证实101112。器官芯片(OOC)技术已被用于通过将细胞和组织整合到三维支架中来更忠实地概括人体的生理学。此外,多个单独的OOC(所谓的人体或人芯片,BOC / HOC)的连接可以通过微流体完成,以允许感兴趣的器官之间的串扰131415。支持组织,如脉管系统,是 OOC 和 BOC/HOC 的关键组成部分;结合脉管系统允许营养物质,氧气和旁分泌因子在整个组织中运输,从而促进必要的组织特异性微环境312。因此,推导成熟人类EC的方法,如动脉,静脉,淋巴管和血源性ECs,对于推进这些组织工程方法至关重要。

已经发布了多个协议,详细说明了从hESC或hiPSC5,16,17181920,21,22,23,242526衍生人类原始或祖EC的步骤.其中许多方案依赖于胚体(EB)形成或ESC / iPSCs与基质细胞的鼠饲养层共培养。这些策略往往既困难又耗时,EC产量低和/或人EC被鼠细胞污染。严格依赖2D培养而不使用基质细胞的方案通常需要长时间诱导,利用生长因子和/或抑制剂的复杂组合进行诱导,细胞分离后具有延长的扩增期,或这些因素的组合。推进对体内成熟EC类型衍生所涉及的信号通路和因素的了解,为简单而强大的体外分化方案奠定了基础。

以前,Notch和Retinoic Acid(RA)信号通路在发育过程中分别在小鼠动脉和血源性EC的规范中的关键作用被确定。Notch信号通路在动脉EC表型的规范和维持中起着多种作用。使用小鼠视网膜血管化模型的工作确定了流体剪切应力诱导Notch-Cx37-p27信号轴的途径,促进G1细胞周期停滞,从而使动脉EC规范27成为可能。据推测,细胞周期状态通过提供独特的机会窗口在细胞命运决策中发挥作用,在这些机会窗口中,细胞可以接受某些可以诱导基因表达和表型变化的信号28。这种Notch介导的G1停滞使富含动脉EC的基因表达,包括ephrinB2,Cx40,DLL4,Notch1和Notch 4(在2930中审查)。还表明,通过RA信号传导3132在体内促进血源性EC规范。其他研究发现,在RA信号传导的下游,c-Kit和Notch的表达上调p27,这使得鼠卵黄囊和AGM33中的产血性规范成为可能。小鼠血源性EC可以通过内皮(即CD31,KDR)和造血(即c-Kit,CD34)标志物的表达进行最低限度的鉴定4。最后,血源性EC经历内皮到造血的转变(EHT)形成HSPC,可以产生所有血细胞类型43435

最近的工作测试了这种相同的信号层次结构是否可以促进人类血源性EC规范。为此,开发了一种无血清和饲养层的2D培养方案,以从hESC中获取血源性EC,并且这些血源性EC在单细胞水平上表征为CD31 + KDR + c-Kit+ CD34 + VE-钙粘蛋白CD45。这项研究还利用了荧光泛素化细胞周期指示剂(FUCCI)报告基因,该报告基因使用表达FUCCI报告基因构建体(H9-FUCCI-hESC)的H9-hESC识别不同的细胞周期状态36。在这些细胞的研究中,证明RA促进EC中的早期G1细胞周期停滞,并且早期G1状态使体外血源性规范37成为可能。本文提供了用于分化这些人血源性内皮细胞的详细方案以及确认其身份的测定。这种简单的方法为未来研究人类血细胞发育的机制提供了一种有用的方法来生成这种专门的EC亚集。

Protocol

1. 试剂和试剂制备 注意: 材料表中提供了试剂列表。 获得人类多能干细胞系:H1-hESC,H9-Fucci-hESC。注意:在H1细胞系中,血源性EC的产生可能更有效。 制备基质蛋白储备液:将基质蛋白等分到预冷的 1.5 mL 管(冰上)中,使每个试管含有 1 mg 基质蛋白。1mg基质蛋白足以包被两个6孔板的所有孔(总共12个孔)。将等分试样储存在-20°C直至使用。…

Representative Results

图1显示了概述hESC的原始EC和血源性EC的规格的示意图,以及电镀后24小时细胞的代表性图像。按照规范,原始EC和血源性EC分别在第5天和第8天纯化FACS。原始EC定义为CD31 + CD45-,血源性EC定义为CD31+ KDR + c-Kit+ CD34+ VE-钙粘蛋白-CD45-。用于原始EC和血源性EC纯化的代表性流式细胞术门控策略如图2</strong…

Discussion

本文概述了使用无小鼠饲养层和无血清的2D培养系统在大约1周内从人胚胎干细胞生产血源性内皮细胞的步骤(图1)。该协议扩展了Sriram等人(2015)描述的方法,以获得原始ECs 38。通过在DLL4包被的平板上培养这些细胞并观察符合动脉规格的基因表达变化,证明了CD31 + CD45-EC的原始性质和规格潜力(图3)。此外,动脉身…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH拨款HL128064和U2EB017103的部分支持。CT Innovations 15-RMB-YALE-04赠款提供了进一步的支持。

Materials

15 cm dishes Corning 430599 tissue culture treated
35 mm dishes Corning 430165 tissue culture treated
6-well plates Corning 3516 tissue culture treated
Antimicrobial reagent
Brand Name: Normocin
Invitrogen ant-nr-1
bFGF R&D systems 233-FB-025 use at 50 ng/mL
BMP4 BioLegend 595202 use at 25 ng/mL
Bovine Serum Albumin (BSA) Fisher Scientific BP1600-1
Cell Detatchment Solution
Brand Name: vAccutase
Stemcell Technologies 7920
Dimethyl Sulfoxide (DMSO) Sigma Aldrich D2650-100mL
Dispase Stemcell Technologies 7913
DLL4 R&D systems 1506-D4/CF recombinant human; use at 10 μg/mL
DMEM:F12 Gibco 11320-033
Dulbecco's Phosphate Buffered Saline (PBS) Gibco 14190144
Endothelial cell growth medium
Brand Name: EGM-2 Endothelial Cell Growth Medium-2 BulletKit (EGM-2)
Lonza CC-3162
FACS tubes Corning 352235 polystyrene round bottom with filter cap
Fetal Bovine Serum (FBS) Gemini Bio 100-106
Fibronectin ThermoFisher Scientific 33016015 use at 4 mg/cm2
GSK3i/CHIR99021 Stemgent 04-0004-02 10 mM stock; use at 5 μM
Hanks Balanced Salt Solution (HBSS) Gibco 14175-095
Hydrochloric Acid (HCl) Fisher Scientific A144S-500
Matrix protein 
Brand Name: Matrigel
Corning 356230 Growth factor reduced. Refer to the Certificate of Analysis for the lot to determine the protein (Matrigel) concentration. This concentration is required to calculate the volume of Matrigel that contains 1 mg of protein.
Methylcellulose-based medium
Brand Name: MethoCult H4435 Enriched
Stemcell Technologies 4435
Pluripotent stem cell differentiation medium
Brand Name: STEMdiff APEL 2
Stemcell Technologies 5270
Pluripotent stem cells: H1, H9, H9-FUCCI WiCell WA09 (H9), WA01 (H1) human; H9-FUCCI were obtained from Dr. Ludovic Vallier's lab at Cambridge Stem Cell Institute
Protein-Free Hybridoma Medium (PFMH) Gibco 12040077
Retinoic Acid Sigma Aldrich R2625-50mg use at 0.5 μM
Reverse transcription master mix
Brand Name: iScript Reverse Transcription Supermix
BioRad 1708840
RNA extraction kit
Brand Name: RNeasy Mini Kit
Qiagen 74104
Sodium Hydroxide (NaOH) Fisher Scientific SS255-1
Stem cell growth medium
Brand Name: mTeSR1
Stemcell Technologies 85850
SYBR Green master mix
Brand Name: iTaq Universal SYBR Green Master Mix
BioRad 1725121
Trypsin-EDTA Gibco 25299956 0.25%
VEGF165 (VEGF-A) PeproTech 100-20 use at 50 ng/mL
α-CD31-FITC BioLegend 303104 2 μg/mL*
α-CD34-Pacific Blue BioLegend 343512 2 μg/mL*
α-CD45-APC/Cy7 BioLegend 304014 2 μg/mL*
α-c-Kit-APC BioLegend 313206 2 μg/mL*
α-Flk-1-PE/Cy7 BioLegend 359911 2 μg/mL*
α-VE-Cadherin-PE BioLegend 348506 2 μg/mL*
* Antibody fluorescent conjugates should be optimized based on the cell sorter used. Presented here are the final concentrations utilized in this study.

Referências

  1. Giacomelli, E., et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development. 144 (6), 1008-1017 (2017).
  2. Wu, J., Wu, Z., Xue, Z., Li, H., Liu, J. PHBV/bioglass composite scaffolds with co-cultures of endothelial cells and bone marrow stromal cells improve vascularization and osteogenesis for bone tissue engineering. RSC Advances. 7 (36), 22197-22207 (2017).
  3. Lee, H., Chung, M., Jeon, N. L. Microvasculature: An essential component for organ-on-chip systems. MRS Bulletin. 39 (1), 51-59 (2014).
  4. Gritz, E., Hirschi, K. K. Specification and function of hemogenic endothelium during embryogenesis. Cellular and Molecular Life Sciences. 73 (8), 1547-1567 (2016).
  5. Williams, I. M., Wu, J. C. Generation of endothelial cells from human pluripotent stem cells: Methods, considerations, and applications. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (7), 1317-1329 (2019).
  6. Olmer, R., et al. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Reports. 10 (5), 1657-1672 (2018).
  7. Cossu, G., et al. Lancet Commission: Stem cells and regenerative medicine. The Lancet. 391 (10123), 883-910 (2018).
  8. Fox, I. J., et al. Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science. 345 (6199), 1247391 (2014).
  9. Mahla, R. S. Stem cells applications in regenerative medicine and disease therapeutics. International Journal of Cell Biology. 2016, 1-24 (2016).
  10. Ebert, A. D., Liang, P., Wu, J. C. Induced pluripotent stem cells as a disease modeling and drug screening platform. Journal of Cardiovascular Pharmacology. 60 (4), 408-416 (2012).
  11. Rowe, R. G., Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics. 20 (7), 377-388 (2019).
  12. Liu, C., Oikonomopoulos, A., Sayed, N., Wu, J. C. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 145 (5), (2018).
  13. Wnorowski, A., Yang, H., Wu, J. C. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews. 140, 3-11 (2019).
  14. Ramme, A. P., et al. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Science OA. 5 (8), 1-12 (2019).
  15. Ronaldson-Bouchard, K., Vunjak-Novakovic, G. Organs-on-a-Chip: A fast track for engineered human tissues in drug development. Cell Stem Cell. 22 (3), 310-324 (2018).
  16. Kane, N. M., et al. Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microrna and angiogenesis in vitro and in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (7), 1389-1397 (2010).
  17. Costa, M., et al. Derivation of endothelial cells from human embryonic stem cells in fully defined medium enables identification of lysophosphatidic acid and platelet activating factor as regulators of eNOS localization. Stem Cell Research. 10 (1), 103-117 (2013).
  18. Nguyen, M. T. X., et al. Differentiation of human embryonic stem cells to endothelial progenitor cells on laminins in defined and xeno-free systems. Stem Cell Reports. 7 (4), 802-816 (2016).
  19. Ikuno, T., et al. Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLOS One. 12 (3), 0173271 (2017).
  20. Aoki, H., et al. Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-B, and GSK3B. Heliyon. 6 (3), 03493 (2020).
  21. Lian, X., et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of Wnt signaling. Stem Cell Reports. 3 (5), 804-816 (2014).
  22. Orlova, V. V., et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols. 9 (6), 1514-1531 (2014).
  23. Kusuma, S., Gerecht, S., Turksen, K. Derivation of endothelial cells and pericytes from human pluripotent stem cells. Human Embryonic Stem Cell Protocols. , 213-222 (2014).
  24. Bao, X., Lian, X., Palecek, S. P. Directed endothelial progenitor differentiation from human pluripotent stem cells via wnt activation under defined conditions. Methods in Molecular Biology. 1481, 183-196 (2016).
  25. Xu, M., He, J., Zhang, C., Xu, J., Wang, Y. Strategies for derivation of endothelial lineages from human stem cells. Stem Cell Research & Therapy. 10 (1), 200 (2019).
  26. Arora, S., Yim, E. K. F., Toh, Y. -. C. Environmental specification of pluripotent stem cell derived endothelial cells toward arterial and venous subtypes. Frontiers in Bioengineering and Biotechnology. 7, 143 (2019).
  27. Fang, J. S., et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nature Communications. 8 (1), 2149 (2017).
  28. Dalton, S. Linking the cell cycle to cell fate decisions. Trends in Cell Biology. 25 (10), 592-600 (2015).
  29. Wolf, K., Hu, H., Isaji, T., Dardik, A. Molecular identity of arteries, veins, and lymphatics. Journal of Vascular Surgery. 69 (1), 253-262 (2019).
  30. Rocha, S. F., Adams, R. H. Molecular differentiation and specialization of vascular beds. Angiogenesis. 12 (2), 139-147 (2009).
  31. Goldie, L. C., Lucitti, J. L., Dickinson, M. E., Hirschi, K. K. Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood. 112 (8), 3194-3204 (2008).
  32. Chanda, B., Ditadi, A., Iscove, N. N., Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell. 155 (1), 215-227 (2013).
  33. Marcelo, K. L., et al. Hemogenic endothelial cell specification requires c-kit, notch signaling, and p27-mediated cell-cycle control. Developmental Cell. 27 (5), 504-515 (2013).
  34. Dejana, E., Hirschi, K. K., Simons, M. The molecular basis of endothelial cell plasticity. Nature Communications. 8 (1), 14361 (2017).
  35. Ottersbach, K. Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochemical Society Transactions. 47 (2), 591-601 (2019).
  36. Pauklin, S., Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 155 (1), 135-147 (2013).
  37. Qiu, J., Nordling, S., Vasavada, H. H., Butcher, E. C., Hirschi, K. K. Retinoic acid promotes endothelial cell cycle early g1 state to enable human hemogenic endothelial cell specification. Cell Reports. 33 (9), 108465 (2020).
  38. Sriram, G., Tan, J. Y., Islam, I., Rufaihah, A. J., Cao, T. Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions. Stem Cell Research & Therapy. 6 (1), 261 (2015).
  39. Ohta, R., Sugimura, R., Niwa, A., Saito, M. K. Hemogenic endothelium differentiation from human pluripotent stem cells in a feeder- and xeno-free defined condition. Journal of Visualized Experiments: JoVE. (148), e59823 (2019).
  40. Galat, Y., et al. Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential. Stem Cell Research & Therapy. 8 (1), 67 (2017).
  41. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., Hopkinson, A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 32 (6), 1380-1389 (2014).
check_url/pt/62391?article_type=t

Play Video

Citar este artigo
Nelson, E. A., Qiu, J., Chavkin, N. W., Hirschi, K. K. Directed Differentiation of Hemogenic Endothelial Cells from Human Pluripotent Stem Cells. J. Vis. Exp. (169), e62391, doi:10.3791/62391 (2021).

View Video