Summary

اختبار الحساسية السريع لمضادات الميكروبات عن طريق التصوير المحفز لنثر رامان لدمج الديوتيريوم في بكتيريا واحدة

Published: February 14, 2022
doi:

Summary

يقدم هذا البروتوكول اختبار الحساسية السريع لمضادات الميكروبات (AST) في غضون 2.5 ساعة عن طريق تصوير تشتت رامان المحفز بخلية واحدة لعملية التمثيل الغذائي D2O. تنطبق هذه الطريقة على البكتيريا الموجودة في البول أو بيئة الدم الكاملة ، والتي تعد تحويلية للنمط الظاهري السريع أحادي الخلية AST في العيادة.

Abstract

لإبطاء ومنع انتشار العدوى المقاومة لمضادات الميكروبات ، هناك حاجة ماسة إلى اختبار الحساسية السريع لمضادات الميكروبات (AST) لتحديد التأثيرات المضادة للميكروبات على مسببات الأمراض كميا. عادة ما يستغرق الأمر أياما لإكمال AST بالطرق التقليدية القائمة على الثقافة طويلة الأمد ، ولا تعمل مباشرة للعينات السريرية. هنا ، نبلغ عن طريقة AST سريعة تم تمكينها عن طريق التصوير المحفز لتشتت رامان (SRS) لدمج التمثيل الغذائي لأكسيد الديوتيريوم (D2O). تتم مراقبة الدمج الأيضي ل D2O في الكتلة الحيوية وتثبيط النشاط الأيضي عند التعرض للمضادات الحيوية على مستوى البكتيريا المفردة بواسطة تصوير SRS. يمكن الحصول على تركيز تعطيل التمثيل الغذائي أحادي الخلية (SC-MIC) للبكتيريا عند التعرض للمضادات الحيوية بعد ما مجموعه 2.5 ساعة من تحضير العينة واكتشافها. علاوة على ذلك ، فإن طريقة AST السريعة هذه قابلة للتطبيق مباشرة على العينات البكتيرية في البيئات البيولوجية المعقدة ، مثل البول أو الدم الكامل. يعد التصوير الأيضي SRS لدمج الديوتيريوم تحويليا للنمط الظاهري السريع أحادي الخلية AST في العيادة.

Introduction

تشكل مقاومة مضادات الميكروبات تهديدا عالميا متزايدا للعلاج الفعال للأمراض المعدية1. من المتوقع أن تتسبب مقاومة مضادات الميكروبات في 10 ملايين حالة وفاة إضافية سنويا وخسارة 100 تريليون دولار في الناتج المحلي الإجمالي العالمي بحلول عام 2050 إذا لم يتم اتخاذ أي إجراء لمكافحة البكتيريا المقاومة للمضادات الحيوية 1,2. وهذا يؤكد الحاجة الملحة لطرق تشخيص سريعة ومبتكرة لاختبار حساسية البكتيريا المعدية للمضادات الحيوية (AST) لإبطاء ظهور البكتيريا المقاومة للمضادات الحيوية وتقليل معدل الوفيات ذات الصلة3. لضمان أفضل نتيجة سريرية ممكنة ، من الضروري إدخال علاج فعال في غضون 24 ساعة. ومع ذلك ، فإن الطريقة القياسية الذهبية الحالية ، مثل طريقة نشر القرص أو طريقة تخفيف المرق ، تتطلب عادة 24 ساعة على الأقل لإجراء الحضانة المسبقة للعينات السريرية و 16-24 ساعة إضافية للحصول على الحد الأدنى من نتائج التركيز المثبط (MIC). بشكل عام ، تستغرق هذه الطرق وقتا طويلا للغاية بحيث لا يمكن توجيه قرار فوري لعلاج الأمراض المعدية في العيادة ، مما يؤدي إلى ظهور وانتشار مقاومة مضادات الميكروبات4.

تم تطوير طرق AST للنمط الجيني ، مثل التقنيات القائمة على تفاعل البوليميراز المتسلسل (PCR)5 ، للكشف السريع. تقيس هذه التقنيات التسلسلات الجينية للمقاومة المحددة من أجل توفير نتائج AST سريعة. أنها لا تعتمد على ثقافة الخلايا التي تستغرق وقتا طويلا. ومع ذلك ، يتم اختبار التسلسلات الجينية المعروفة فقط مع المقاومة. لذلك ، يقتصر تطبيقه على الأنواع البكتيرية المختلفة أو آليات المقاومة المختلفة. أيضا ، لا يمكنهم تقديم نتائج MIC لقرارات العلاج 6,7. إلى جانب ذلك ، يتم تطوير طرق النمط الظاهري الجديدة ل AST السريع للتغلب على هذه القيود8 ، بما في ذلك أجهزة الموائع الدقيقة9،10،11،12،13 ، والأجهزة البصرية 14،15،16 ، AST المظهري الذي يحدد كمية نسخة الأحماض النوويةرقم 17،18 ، وطرق رامان الطيفية 19 ، 20،21،22،23،24. تقلل هذه الطرق من الوقت اللازم لتوجيه نتائج AST ، ومع ذلك ، فإن معظمها ينطبق فقط على العزلات البكتيرية ، وليس مباشرة على العينات السريرية ، ولا يزال يتطلب حضانة طويلة الأمد.

في هذا العمل ، نقدم طريقة لتحديد سريع لحساسية البكتيريا في البول والدم الكامل من خلال مراقبة النشاط الأيضي الخلوي عن طريق التصوير SRS. يشارك الماء (H2O) في الغالبية العظمى من عمليات التوليف الجزيئي الحيوي الأساسية في الخلايا الحية. كإيزوتوبولوج للماء ، من خلال تفاعل التبادل H / D المحفز بالإنزيم بين ذرة الهيدروجين النشطة للأكسدة والاختزال في NADPH والذرة D في D2O ، يمكن دمج الديوتيريوم في الكتلة الحيوية داخل الخلية25,26. يتم التوسط في تفاعل تخليق الأحماض الدهنية المديوتيريوم المسمى NADPH. ينتج عن دمج D2O في تفاعلات الأحماض الأمينية (AAs) إنتاج البروتين المثبط26 (الشكل 1). وبهذه الطريقة ، يمكن استخدام الجزيئات الحيوية المحتوية على رابطة C-D المركبة حديثا في الخلايا الميكروبية المفردة كعلامة عامة للنشاط الأيضي ليتم اكتشافها. لقراءة روابط C-D المركبة من جديد ، يستخدم التحليل الطيفي Raman ، وهو أداة تحليلية متعددة الاستخدامات توفر معلومات كيميائية محددة وكمية للجزيئات الحيوية ، على نطاق واسع لتحديد الحساسية لمضادات الميكروبات وتقليل وقت الاختبار بشكل كبير إلى بضع ساعات27،28،29،30 . ومع ذلك ، نظرا للكفاءة المنخفضة المتأصلة في عملية تشتت رامان ، فإن التحليل الطيفي التلقائي لرامان ذو حساسية كشف منخفضة. لذلك ، من الصعب الحصول على نتائج الصور في الوقت الفعلي باستخدام التحليل الطيفي التلقائي لرامان. وصل تشتت رامان المتماسك (CRS) ، بما في ذلك تشتت رامان المتماسك المضاد لستوكس (CARS) وتشتت رامان المحفز (SRS) ، إلى حساسية عالية للكشف بسبب مجال الضوء المتماسك لتوليد أوامر بحجم أكبر من مطيافية رامان التلقائية ، وبالتالي تقديم تصوير كيميائي عالي السرعة ومحدد وكمي على مستوى الخلية الواحدة31،32،33،34،35 ، 36،37،38،39.

هنا ، بناء على أحدث أعمالنا40 ، نقدم بروتوكولا للتحديد السريع للنشاط الأيضي والحساسية لمضادات الميكروبات عن طريق تصوير الفيمتو ثانية SRS C-D لدمج D2O للبكتيريا في الوسط الطبيعي والبول وبيئة الدم الكاملة على مستوى الخلية الواحدة. يسهل تصوير الفيمتو ثانية SRS مراقبة تركيز تعطيل التمثيل الغذائي للخلية الواحدة (SC-MIC) ضد المضادات الحيوية على مستوى البكتيريا المفردة في غضون 2.5 ساعة. يتم التحقق من صحة نتائج SC-MIC عن طريق اختبار MIC القياسي عن طريق التخفيف الدقيق للمرق. طريقتنا قابلة للتطبيق لتحديد حساسية مضادات الميكروبات للبكتيريا عدوى المسالك البولية (UTI) ومسببات عدوى مجرى الدم (BSI) مع وقت فحص أقل بكثير مقارنة بالطريقة التقليدية ، مما يفتح الفرصة ل AST النمط الظاهري السريع في العيادة على مستوى الخلية الواحدة.

Protocol

يتوافق استخدام عينات الدم البشري مع إرشادات IRB بجامعة بوسطن والمعاهد الوطنية للصحة (NIH). على وجه التحديد ، العينات من بنك وتم تحديد هويتها بالكامل. لا تعتبر هذه العينات موضوعات بشرية من قبل مكتب مجلس المراجعة المؤسسية (IRB) في جامعة بوسطن. 1. تحضير محلول مخزون البكتيريا والمضادات…

Representative Results

يتم قياس تأثير وقت الحضانة على دمج الديوتيريوم بواسطة التحليل الطيفي الدقيق لرامان التلقائي في منطقة C-D (2070 إلى 2250 سم -1) و C-H (2800 إلى 3100 سم -1) (الشكل 4 أ). تظهر أطياف رامان أحادية الخلية ذات الفاصل الزمني ل P. aeruginosa المزروعة في 70٪ D 2 O التي تحتوي على وسط زيادة كثافة…

Discussion

يمكن الحصول على AST السريع من خلال تقييم استجابة النشاط الأيضي البكتيري للعلاج بالمضادات الحيوية باستخدام التصوير الأيضي SRS أحادي الخلية في غضون 2.5 ساعة من العينة إلى نتائج SC-MIC. يمكن الكشف عن استجابة النشاط الأيضي البكتيري والحساسية لمضادات الميكروبات من خلال مراقبة الدمج الأيضي ل D2O…

Declarações

The authors have nothing to disclose.

Acknowledgements

تم دعم هذا العمل من قبل NIH R01AI141439 إلى J.-X.C و MS ، و R35GM136223 إلى J.-X.C.

Materials

Acousto-optic modulation Gooch&Housego R15180-1.06-LTD Modulating stokes laser beam
Amoxicillin Sigma Aldrich A8523-5G
Bandpass filter Chroma HQ825/150m Block the stokes laser beam before the photodiode
Calcium chloride Sigma Aldrich C1016-100G Cation adjustment
Cation-adjusted Mueller-Hinton Broth Fisher Scientific B12322 Antimicrobial susceptibility testing of microorganisms by broth dilution methods
Centrifuge Thermo Scientific 75002542
Cover Glasses VWR 16004-318
Culture tube with snap cap Fisher brand 149569B
Daptomycin Acros A0386346
Deuterium oxide 151882 Organic solvent to dissolve antibiotics
Deuterium oxide-d6 Sigma Aldrich 156914 Organic solvent as a standard to calibrate SRS imaging system
Escherichia coli BW 25113 The Coli Genetic Stock Center 7636
Eppendorf polypropylene microcentrifuge tubes 1.5 mL Fisher brand 05-408-129
Gentamicin sulfate Sigma Aldrich G4918
Hydrophilic Polyvinylidene Fluoride filters Millipore-Sigma SLSV025NB pore size 5 µm
ImageJ software NIH Version: 2.0.0-rc-69/1.52t Image processing and analysis
Incubating orbital shaker set at 37 °C VWR 97009-890
Inoculation loop Sigma BR452201-1000EA
InSight DeepSee femtosecond pulsed laser Spectra-Physics Model: insight X3 Tunable laser source and fixed laser source at 1045 nm for SRS imaging
Lock-in amplifier Zurich Instrument HF2LI Demodulate the SRS signals
Oil condenser Olympus U-AAC NA 1.4
Pseudomonas aeruginosa ATCC 47085 (PAO1) American Type Culture Collection ATCC 47085
Photodiode Hamamatsu S3994-01 Detector
Polypropylene conical tube 15 mL Falcon 14-959-53A
Polypropylene filters Thermo Scientific 726-2520 pore size 0.2 µm
Sterile petri dishes Corning 07-202-031
Syringe 10 mL Fisher brand 14955459
UV/Vis Spectrophotometer Beckman Coulter Model: DU 530 Measuring optical density at wavelength of 600 nm
Vortex mixer VWR 97043-562
Water objective Olympus UPLANAPO/IR 60×, NA 1.2

Referências

  1. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. The review on Antimicrobial Resistance. , (2016).
  2. Sugden, R., Kelly, R., Davies, S. Combatting antimicrobial resistance globally. Nature Microbiology. 1 (10), 16187 (2016).
  3. Kumar, A., et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Medicine. 34 (6), 1589-1596 (2006).
  4. Reller, L. B., Weinstein, M., Jorgensen, J. H., Ferraro, M. J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases. 49 (11), 1749-1755 (2009).
  5. Frickmann, H., Masanta, W. O., Zautner, A. E. Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. BioMed Research International. 2014, 375681 (2014).
  6. Avesar, J., et al. Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proceedings of the National Academy of Sciences. 114 (29), 5787-5795 (2017).
  7. Schoepp, N. G., et al. Digital quantification of DNA replication and chromosome segregation enables determination of antimicrobial susceptibility after only 15 minutes of antibiotic exposure. Angewandte Chemie International Edition. 55 (33), 9557-9561 (2016).
  8. van Belkum, A., et al. Innovative and rapid antimicrobial susceptibility testing systems. Nature Reviews Microbiology. 18 (5), 299-311 (2020).
  9. Hou, Z., An, Y., Hjort, K., Sandegren, L., Wu, Z. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab on a Chip. 14 (17), 3409-3418 (2014).
  10. Choi, J., et al. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab on a Chip. 13 (2), 280-287 (2013).
  11. Lu, Y., et al. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Analytical Chemistry. 85 (8), 3971-3976 (2013).
  12. Kim, S. C., Cestellosblanco, S., Inoue, K., Zare, R. N. Miniaturized antimicrobial susceptibility test by combining concentration gradient generation and rapid cell culturing. Antibiotics. 4 (4), 455-466 (2015).
  13. Choi, J., et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Science Translational Medicine. 6 (267), (2014).
  14. Baltekin, &. #. 2. 1. 4. ;., Boucharin, A., Tano, E., Andersson, D. I., Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proceedings of the National Academy of Sciences. 114 (34), 9170-9175 (2017).
  15. Fredborg, M., et al. Real-time optical antimicrobial susceptibility testing. Journal of Clinical Microbiology. 51 (7), 2047-2053 (2013).
  16. Choi, J., et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Science Translational Medicine. 6 (267), (2014).
  17. Barczak, A. K., Hung, D. T. RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities. Proceedings of the National Academy of Sciences. 109 (16), 6217-6222 (2012).
  18. Schoepp, N. G., et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Science Translational Medicine. 9 (410), (2017).
  19. Novelli-Rousseau, A., et al. Culture-free antibiotic-susceptibility determination from single-bacterium Raman spectra. Scientific Reports. 8 (1), 1-12 (2018).
  20. Schröder, U. -. C., et al. Detection of vancomycin resistances in enterococci within 3 1/2 hours. Scientific Reports. 5, 8217 (2015).
  21. Liu, C. -. Y., et al. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Scientific Reports. 6 (1), 1-15 (2016).
  22. Chang, K. -. W., et al. Antibiotic susceptibility test with surface-enhanced raman scattering in a microfluidic system. Analytical Chemistry. 91 (17), 10988-10995 (2019).
  23. Galvan, D. D., Yu, Q. surface-enhanced raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Advanced Healthcare Materials. 7 (13), 1701335 (2018).
  24. Kirchhoff, J., et al. Simple ciprofloxacin resistance test and determination of minimal inhibitory concentration within 2 h using raman spectroscopy. Analytical Chemistry. 90 (3), 1811-1818 (2018).
  25. Zhang, Z., Chen, L., Liu, L., Su, X., Rabinowitz, J. D. Chemical basis for deuterium labeling of fat and NADPH. Journal of the American Chemical Society. 139 (41), 14368-14371 (2017).
  26. Shi, L., et al. Optical imaging of metabolic dynamics in animals. Nature Communications. 9 (1), 2995 (2018).
  27. Berry, D., et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences. 112 (2), 194-203 (2015).
  28. Tao, Y., et al. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell raman microspectroscopy. Analytical Chemistry. 89 (7), 4108-4115 (2017).
  29. Yang, K., et al. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy water-labeled single-cell raman spectroscopy in clinical samples. Analytical Chemistry. 91 (9), 6296-6303 (2019).
  30. Song, Y., et al. Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River. Scientific reports. 7 (1), 16648 (2017).
  31. Freudiger, C. W., et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 322 (5909), 1857-1861 (2008).
  32. Cheng, J. -. X., Xie, X. S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science. 350 (6264), (2015).
  33. Zhang, C., Zhang, D., Cheng, J. -. X. Coherent Raman scattering microscopy in biology and medicine. Annual Review of Biomedical Engineering. 17, 415-445 (2015).
  34. Yue, S., Cheng, J. -. X. Deciphering single cell metabolism by coherent Raman scattering microscopy. Current Opinion in Chemical Biology. 33, 46-57 (2016).
  35. Hu, F., Shi, L., Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nature Methods. 16 (9), 830-842 (2019).
  36. Ji, M., et al. Rapid, Label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine. 5 (201), (2013).
  37. He, R., Liu, Z., Xu, Y., Huang, W., Ma, H., Ji, M. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line. Optics Letters. 42 (4), 659-662 (2017).
  38. Suzuki, Y., et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proceedings of the National Academy of Sciences. 116 (32), 15842-15848 (2019).
  39. Camp, C. H., et al. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues. Nature Photonics. 8, 627-634 (2014).
  40. Zhang, M., et al. Rapid determination of antimicrobial susceptibility by stimulated raman scattering imaging of D2O metabolic incorporation in a single bacterium. Advanced Science. 7 (19), 2001452 (2020).
  41. Michael, I., et al. A fidget spinner for the point-of-care diagnosis of urinary tract infection. Nature Biomedical Engineering. 4 (6), 591-600 (2020).
  42. Bhattacharyya, R. P., et al. Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination. Nature Medicine. 25 (12), 1858-1864 (2019).
  43. Stupar, P., et al. Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clinical Microbiology and Infection. 23 (6), 400-405 (2017).
  44. Barber, A. E., Norton, J. P., Spivak, A. M., Mulvey, M. A. Urinary Tract Infections: Current and Emerging Management Strategies. Clinical Infectious Diseases. 57 (5), 719-724 (2013).
  45. Cohen, J., et al. Sepsis: a roadmap for future research. The Lancet Infectious Diseases. 15 (5), 581-614 (2015).
  46. Choi, J., et al. rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Scientific Reports. 7 (1), 1148 (2017).
  47. Gherardi, G., et al. Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. Diagnostic Microbiology and Infectious Disease. 72 (1), 20-31 (2012).
  48. Machen, A., Drake, T., Wang, Y. F. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system. Plos One. 9, 87870 (2014).
  49. Simon, L., et al. Direct identification of 80 percent of bacteria from blood culture bottles by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a 10-minute extraction protocol. Journal of Clinical Microbiology. 57 (2), 01278 (2019).
  50. Leekha, S., Terrell, C. L., Edson, R. S. General principles of antimicrobial therapy. Mayo Clinic Proceedings. 86 (2), 156-167 (2011).
  51. Johnson, L., et al. Emergence of fluoroquinolone resistance in outpatient urinary Escherichia coli isolates. The American Journal of Medicine. 121 (10), 876-884 (2008).
  52. Van Belkum, A., et al. Developmental roadmap for antimicrobial susceptibility testing systems. Nature Reviews Microbiology. 17 (1), 51-62 (2019).
  53. Dubourg, G., Lamy, B., Ruimy, R. Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: meeting the challenge to reduce the time to result. Clinical Microbiology and Infection. 24 (9), 935-943 (2018).
check_url/pt/62398?article_type=t

Play Video

Citar este artigo
Zhang, M., Seleem, M. N., Cheng, J. Rapid Antimicrobial Susceptibility Testing by Stimulated Raman Scattering Imaging of Deuterium Incorporation in a Single Bacterium. J. Vis. Exp. (180), e62398, doi:10.3791/62398 (2022).

View Video