Summary

在苹果纸浆中用 Fluo-4/AM 染色细胞质 Ca2+

Published: November 06, 2021
doi:

Summary

苹果浆细胞的分离原体装有荧光钙试剂,以检测细胞质Ca2+ 浓度。

Abstract

细胞溶胶 Ca2+在植物开发中起着关键作用。钙成像是检测细胞质中 Ca2+动态变化的最通用方法。在这项研究中,我们通过酶水解获得了纸浆细胞的可行原体。分离的原质在37°C下用小分子荧光试剂(Fluo-4/AM)孵育30分钟。 荧光探针成功地染色了细胞溶胶Ca2+,但没有积聚在真空中。La3+, Ca2+通道阻滞剂, 降低细胞质荧光强度.这些结果表明,Fluo-4/AM可用于检测果肉中细胞溶胶 Ca2+的变化。总之,我们提出了一种方法,通过在果肉细胞的细胞质中加载小分子荧光钙试剂,有效地将原质从水果的肉细胞中分离出来,并检测Ca2+。

Introduction

Ca2+在植物信号转导和代谢1、2中起着重要作用。此外,它调节水果质量特征3,4,包括硬度,糖含量,和易感性生理障碍在存储过程中5,6。细胞质Ca2+在信号转导中起着重要作用,调节植物生长发育细胞钙质平衡的干扰可诱发苹果苦坑8个,梨9个棕色斑点病,西红柿脐腐烂10个,影响水果质量,造成严重经济损失3,11。钙成像具有足够的空间和时间分辨率,是观察活细胞12、13中Ca2+动力学的重要方法。

目前,活细胞细胞内钙成像主要有两种方法:一种采用化学小分子荧光探针14,另一种采用基因编码传感器(GECI)15、16。由于在果树中难以建立稳定的转基因系统和更长的果树发育,GECIS不适合果树Ca2+荧光成像。

小分子荧光探针,如Fluo-4/AM有一个特别的优势:他们的AM酯形式(细胞渗透乙酰酯衍生物)可以很容易地批量载入活细胞,而无需转染,这使得它灵活,快速,非细胞毒性17。Fluo-4/AM可以成功地装载到皮鲁斯皮里福利亚18和佩妮,19的花粉管,以及守卫细胞20和根毛的阿拉伯21。

目前,关于纸浆细胞钙荧光染色的报告很少。钙作为一种重要的矿物质元素,在苹果等树果的生长和质量控制中起着关键作用。苹果树被全球公认为重要的经济物种,苹果被认为是一种健康食品。在这项研究中,我们通过酶水解从苹果果浆中获得了可行的原质,然后将小分子荧光试剂装入细胞质中,以检测Ca2+

Protocol

1. 前列座提取 准备基本解决方案:20 mM CaCl 2,5mM 2-(N-形态)乙醇酸和0.4M D-索比托。注:基本溶液的 pH 值调整为 5.8,带有 0.1 M Tris 缓冲器,通过 0.22 μm 水溶性滤清器过滤,并存储在 4 °C 下。 准备酶溶液:将 0.3%(w/v) 马塞罗酶 R-10 和 0.5%(w/v) 纤维酶 R-10 与基本溶液混合。 将 0.5 mL 的酶溶液加入 1.5 mL 离心机管中。挑选一个健康成熟的苹果。然后…

Representative Results

按照上述协议,我们使用酶方法从纸浆中获取可行的原质(图1)。有些原体有真空,而另一些没有。当Ca2+ 荧光指示器没有加载到原位时,原质没有荧光。当Flo-4/AM被加载到原质中时,细胞质,而不是真空,变成了荧光(图2)。这一结果表明,Fluo-4/AM成功地在细胞质中染色了Ca2+, 并且没有观察到24的隔膜化。原质被FD…

Discussion

在这项研究中,通过酶水解获得了可行的原体。请注意,这种方法需要新鲜的苹果。本协议允许将大量原质从果浆中快速分离,用于研究。此方法的适用性不仅限于”富士”:”杜南”和”蜂蜜脆”的苹果浆的原体也可以通过相同的协议提取(补充图S4)。酶溶解后的前端溶液包含细胞碎片,与以前的方法相比有所改进。作为一种必需的细胞材料,苹果浆原体可用于细胞蛋白表达技术、单细胞…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了山东省农业品种改良项目(2019LZGC007)和山东现代农业产业技术体系果树创新团队(SDAIT-06-05)的支持。

Materials

10× phosphate-buffered saline Solarbio P1022 PBS (phosphate buffered solution) is a phosphate buffer solution, which can provide a relatively stable ionic environment and pH buffering capacity. It is a buffer salt solution often used in biology for molecular cloning and cell culture. The pH is 7.4. 
2-(N-morpholino)ethanesulfonic acid Solarbio M8010 Biological buffer
CaCl2·2H2O Solarbio C8370 Calcium chloride dihydrate is a white or gray chemical, mostly in granular form.
Cellulase R-10 Yakult Honsha MX7352 Degrade plant cell walls.
D-sorbitol Solarbio S8090 It has good moisturizing properties, prevents drying, and prevents sugar, salt, etc. from crystallizing.
F-127 Thermo Fisher Scientific P6867 Pluronic F-127 is a non-ionic, surfactant polyol (molecular weight of approximately 12500 Daltons), which has been found to be beneficial to promote the dissolution of water-insoluble dyes and other materials in physiological media. 
FDA Thermo Fisher Scientific F1303 FDA is a cell-permeant esterase substrate that can serve as a viability probe that measures both enzymatic activity, which is require to activate its fluorescence, and cell-membrane integrity, which is required for intracellular retention of their fluorescent product. 
Fluo-4/AM Thermo Fisher Scientific F14201 The green fluorescent calcium indicator Fluo-4/AM is an improved version of the calcium indicator Fluo-3/AM. The Fluo-4/AM loads faster and is brighter at the same concentration. It can be well excited with a 488 nm argon ion laser.
Fluorescence microscope Thermo Fisher EVOS Auto 2 Observe the fluorescence image.
Macerozyme R-10 Yakult Honsha MX7351 Degrade plant tissue to separate single cells.
Tris Solarbio T8060 It is widely used in the preparation of buffers in biochemistry and molecular biology experiments.

Referências

  1. Hocking, B., Tyerman, S. D., Burton, R. A., Gilliham, M. Fruit calcium: Transport and physiology. Frontiers in Plant Science. 7, 569 (2016).
  2. Li, J., Yang, H. -. q., Yan, T. -. l., Shu, H. -. r. Effect of indole butyric acid on the transportation of stored calcium in Malus hupehensis rhed. Seedling. Agricultural Sciences in China. 5 (11), 834-838 (2006).
  3. Gao, Q., Xiong, T., Li, X., Chen, W., Zhu, X. Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae. 253, 412-421 (2019).
  4. Barrett, D. M., Beaulieu, J. C., Shewfelt, R. L. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition. 50 (5), 369-389 (2010).
  5. Deell, J. R., Khanizadeh, S., Saad, F., Ferree, D. C. Factors affecting apple fruit firmness–a review. Journal- American Pomological Society. 55 (1), 8-27 (2001).
  6. Johnston, J., Hewett, E., Hertog, M. A. T. M. Postharvest softening of apple (Malus domestica) fruit: A review. New Zealand Journal of Experimental Agriculture. 30 (3), 145-160 (2002).
  7. Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A., Pottosin, I. Calcium transport across plant membranes: mechanisms and functions. New Phytologist. 220 (1), 49-69 (2018).
  8. Miqueloto, A., et al. Mechanisms regulating fruit calcium content and susceptibility to bitter pit in cultivars of apple. Acta horticulturae. 1194 (1194), 469-474 (2018).
  9. Kou, X., et al. Effects of CaCl2 dipping and pullulan coating on the development of brown spot on ‘Huangguan’ pears during cold storage. Postharvest Biology and Technology. 99, 63-72 (2015).
  10. Vinh, T. D., et al. Comparative analysis on blossom-end rot incidence in two tomato cultivars in relation to calcium nutrition and fruit growth. The Horticulture Journal. 87 (1), 97-105 (2018).
  11. Yamane, T. Foliar calcium applications for controlling fruit disorders and storage life in deciduous fruit trees. Japan Agricultural Research Quarterly. 48 (1), 29-33 (2014).
  12. Grienberger, C., Konnerth, A. Imaging calcium in neurons. Neuron. 73 (5), 862-885 (2012).
  13. Bootman, M. D., Rietdorf, K., Collins, T. J., Walker, S., Sanderson, M. J. Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. CSH Protocols. 2013 (2), 83 (2013).
  14. Hirabayashi, K., et al. Development of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability. Cell Calcium. 60 (4), 256-265 (2016).
  15. Krebs, M., et al. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca(2)(+) dynamics. Plant Journal. 69 (1), 181-192 (2012).
  16. Zhao, Y., et al. An expanded palette of genetically encoded Ca(2)(+) indicators. Science. 333 (2), 1888-1891 (2011).
  17. Gee, K. R., et al. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 27 (2), 97-106 (2000).
  18. Qu, H., Xing, W., Wu, F., Wang, Y. Rapid and inexpensive method of loading fluorescent dye into pollen tubes and root hairs. PLoS One. 11, 0152320 (2016).
  19. Suwińska, A., Wasąg, P., Zakrzewski, P., Lenartowska, M., Lenartowski, R. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia. Planta. 245 (5), 909-926 (2017).
  20. Sun, L., et al. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H2O2, Ca2+ and nitric oxide in Arabidopsis guard cells. Plant Science. 262, 81-90 (2017).
  21. Niu, Y. F., et al. Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. Plant Cell and Environment. 37 (12), 2795-2813 (2014).
  22. Qiu, L., Wang, Y., Qu, H. Loading calcium fluorescent probes into protoplasts to detect calcium in the flesh tissue cells of Malus domestica. Horticulture Research. 7, 91 (2020).
  23. Boyer, J., Liu, R. H. Apple phytochemicals and their health benefits. Nutrition Journal. 3 (1), 5 (2004).
  24. Takahashi, A., Camacho, P., Lechleiter, J. D., Herman, B. Measurement of intracellular calcium. Physiological Reviews. 79 (4), 1089-1125 (1999).
  25. Qu, H., Shang, Z., Zhang, S., Liu, L., Wu, J. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytologist. 174 (3), 524-536 (2007).
  26. Hadjantonakis, A. K., Pisano, E., Papaioannou, V. E. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One. 3 (6), 2511 (2008).
  27. DeSimone, J. A., et al. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli. Journal of Neurophysiology. 108 (12), 3206-3220 (2012).
  28. Kao, J. P., Harootunian, A. T., Tsien, R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. Journal of Biological Chemistry. 264 (14), 8179-8184 (1989).
  29. Merritt, J. E., Mccarthy, S. A., Davies, M., Moores, K. E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2. Biochemical Journal. 269 (2), 513-519 (1990).
  30. Li, W., et al. A comparative study on Ca content and distribution in two Gesneriaceae species reveals distinctive mechanisms to cope with high rhizospheric soluble calcium. Frontiers in Plant Science. 5 (5), 647 (2014).
  31. Zhang, W., Rengel, Z., Kuo, J. Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant Journal. 15 (1), 147-151 (1998).
  32. Qu, H., Jiang, X., Shi, Z., Liu, L., Zhang, S. Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia. Journal of Plant Research. 125 (1), 185-195 (2012).
  33. Wang, Y., et al. Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis. root hairs. BMC Plant Biology. 10, 53 (2010).
  34. Fujimori, T., Jencks, W. P. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Journal of Biological Chemistry. 265 (27), 16262-16270 (1990).
check_url/pt/62526?article_type=t

Play Video

Citar este artigo
Qiu, L., Huang, D., Wang, Y., Qu, H. Staining the Cytoplasmic Ca2+ with Fluo-4/AM in Apple Pulp. J. Vis. Exp. (177), e62526, doi:10.3791/62526 (2021).

View Video