Summary

Bioimpression 3D d’astrocytes corticaux murins pour l’ingénierie de tissus de type neural

Published: July 16, 2021
doi:

Summary

Nous rapportons ici une méthode de bioimpression 3D d’astrocytes corticaux murins pour la biofabrication de tissus de type neuronal afin d’étudier la fonctionnalité des astrocytes dans le système nerveux central et les mécanismes impliquant les cellules gliales dans les maladies neurologiques et les traitements.

Abstract

Les astrocytes sont des cellules gliales ayant un rôle essentiel dans le système nerveux central (SNC), y compris le soutien et la fonctionnalité neuronals. Ces cellules répondent également aux lésions neurales et agissent pour protéger le tissu contre les événements dégénératifs. Les études in vitro de la fonctionnalité des astrocytes sont importantes pour élucider les mécanismes impliqués dans de tels événements et contribuer au développement de thérapies pour traiter les troubles neurologiques. Ce protocole décrit une méthode pour biofabriquer une structure tissulaire de type neuronal riche en astrocytes par bioimpression 3D d’une bioencaire chargée d’astrocytes. Une bioimprimante 3D à base d’extrusion a été utilisée dans ce travail, et les astrocytes ont été extraits des cortex cérébraux des chiots de souris C57Bl / 6. La bioencentaire a été préparée en mélangeant des astrocytes corticaux jusqu’au passage 3 à une solution de biomatériau composée de gélatine, de gélatine-méthacryloyle (GelMA) et de fibrinogène, complétée par de la laminine, qui présentait des conditions optimales de bioimpression. Les conditions de bio-impression 3D ont minimisé le stress cellulaire, contribuant à la haute viabilité des astrocytes pendant le processus, dans lequel 74,08% ± 1,33% des cellules étaient viables juste après la bioimpression. Après 1 semaine d’incubation, la viabilité des astrocytes a considérablement augmenté à 83,54% ± 3,00%, ce qui indique que la construction 3D représente un microenvironnement approprié pour la croissance cellulaire. La composition du biomatériau a permis l’attachement cellulaire et stimulé le comportement astrocytaire, les cellules exprimant la protéine acide fibrillaire gliale marqueur astrocytaire spécifique des astrocytes (GFAP) et possédant une morphologie astrocytaire typique. Ce protocole reproductible fournit une méthode précieuse pour biofabriquer des tissus de type neuronal 3D riches en astrocytes qui ressemblent au microenvironnement natif des cellules, utile aux chercheurs qui visent à comprendre la fonctionnalité des astrocytes et leur relation avec les mécanismes impliqués dans les maladies neurologiques.

Introduction

Les astrocytes sont le type de cellule le plus abondant dans le système nerveux central (SNC) et jouent un rôle clé dans l’homéostasie cérébrale. En plus de supporter le neurone, les astrocytes sont responsables de la modulation de l’absorption des neurotransmetteurs, du maintien de l’intégrité de la barrière hémato-encéphalique et de la régulation de la synaptogenèse neuronale1,2. Les astrocytes ont également un rôle essentiel dans l’inflammation du SNC, répondant aux lésions cérébrales dans un processus qui conduit à la réactivité astrocitaire ou à l’astrogliose réactive3,4 , formant une cicatriceglialequi empêche l’exposition des tissus sains aux agents dégénératifs5. Cet événement entraîne des changements dans l’expression génique, la morphologie et la fonction des astrocytes6,7. Par conséquent, les études portant sur la fonctionnalité des astrocytes sont utiles pour le développement de thérapies pour traiter les troubles neurologiques.

Les modèles in vitro sont cruciaux pour étudier les mécanismes liés aux lésions neurologiques, et bien que l’isolement réussi et la culture bidimensionnelle (2D) des astrocytes corticaux aient été établis8,ce modèle ne parvient pas à fournir un environnement réaliste qui imite le comportement des cellules natives et à reproduire la complexité du cerveau9 . Dans l’état 2D, le faible soutien mécanique et biochimique, les faibles interactions cellule-cellule et cellule-matrice, et l’aplatissement cellulaire conduisant à l’absence de polarité baso-apicale, affectent la dynamique de signalisation cellulaire et les résultats expérimentaux conduisant à une altération de la morphologie cellulaire et de l’expression des gènes, qui compromettent la réponse aux traitements10. Par conséquent, il est crucial de développer des alternatives qui fournissent un environnement neuronal plus réaliste, visant à traduire les résultats à la clinique.

La culture cellulaire tridimensionnelle (3D) représente un modèle plus avancé qui récapitule avec des caractéristiques de fidélité accrues des organes et des tissus, y compris leSNC 11. En ce qui concerne la culture gliale, les modèles 3D contribuent au maintien de la morphologie des astrocytes, de la polarité baso-apicale cellulaire et de la signalisation cellulaire12,13. La technologie de bio-impression 3D est apparue comme un outil puissant pour biofabriquer des tissus vivants 3D de manière contrôlée en utilisant des cellules et des biomatériaux pour recréer la structure et les propriétés des tissus natifs. L’utilisation de cette technologie a conduit à une amélioration substantielle de la prédiction des résultats et a contribué à la médecine régénérative appliquée au SNC14,15,16.

Le protocole décrit ici détaille l’isolement et la culture des astrocytes corticaux. Le protocole détaille également une méthode reproductible pour bioimprimer des astrocytes incorporés dans de la gélatine / méthacryloyle de gélatine (GelMA) / fibrinogène, complétés par de la laminine. Dans ce travail, une bioimprimante à base d’extrusion a été utilisée pour imprimer la composition de biomatériau contenant des astrocytes corticaux à une densité de 1 x 106 cellules / mL. La contrainte de cisaillement de la bio-impression a été minimisée en contrôlant la vitesse d’impression, et les astrocytes ont montré une viabilité élevée après le processus. Les constructions bioimprimées ont été cultivées pendant 1 semaine, et les astrocytes ont pu se propager, se fixer et survivre dans l’hydrogel, en maintenant la morphologie astrocytaire et en exprimant un marqueur spécifique de la protéine acide fibrillaire gliale (GFAP)4.

Cette procédure est compatible avec les bioimprimantes à base d’extrusion à piston et peut être utilisée pour bioimprimer des astrocytes dérivés de différentes sources. Le modèle bioimprimé en 3D proposé ici convient à un large éventail d’applications d’ingénierie neuronale, telles que l’étude des mécanismes impliqués dans la fonctionnalité des astrocytes dans les tissus sains et la compréhension de la progression des pathologies neurologiques et du développement de traitements.

Protocol

Toutes les procédures impliquant des animaux ont suivi les directives internationales pour l’utilisation des animaux dans la recherche (http://www.iclas.org) et ont été approuvées par le Comité d’éthique de la recherche de l’Universidade Federal de São Paulo (CEUA 2019 / 9292090519). 1. Dissection cérébrale de souris Transférer 10 mL de solution saline tamponnée Hanks froide (HBSS) dans une boîte de culture de 100 mm et 1 mL dans un microtube de 1,5 mL. Préparez un…

Representative Results

Ce travail visait à développer un tissu de type neuronal en utilisant la technologie de bio-impression 3D pour déposer couche par couche de gélatine primaire chargée d’astrocytes / GelMA / fibrinogène bioink. Les astrocytes ont été extraits et isolés du cortex cérébral de chiots souris(Figure 1),ajoutés à une composition de biomatériaux, permettant la biofabrication d’une construction 3D vivante. La conception assistée par ordinateur (CAO) a ét…

Discussion

La technologie de bio-impression 3D est apparue comme une alternative de biofabrication qui permet l’ingénierie de constructions raffinées qui ressemblent structurellement et physiologiquement à des tissus natifs22, y compris le cerveau23. La biofabrication de tissus de type neuronal permet une modélisation in vitro du microenvironnement natif, étant un outil important pour comprendre les mécanismes cellulaires et moléculaires associés au développement e…

Declarações

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par la Fondation de recherche de São Paulo (FAPESP), numéros de subvention 2018/23039-3 et 2018/12605-8; Conseil national pour le développement scientifique et technologique (CNPq), numéros de subvention 465656/2014-5 et 309679/2018-4; et Coordination pour l’amélioration du personnel de l’enseignement supérieur (CAPES), code financier 001.

Materials

3D Bioprinter 3D Biotechnology Solutions Extrusion-based bioprinter
Blunt-tip forceps Integra Miltex 6–30 Forceps for brain dissection previously sterilized
Bovine serum albumin Sigma-Aldrich 9048-46-8 Protease free, fatty acid free, essentially globulin free
CaCl2 Sigma-Aldrich 10043-52-4
Cell culture flask Fisher Scientific 156340 Culture flask T25
Cell strainer Corning Incorporated 352340 Cell strainer 40 µm
Confocal microscope Leica Confocal TCS SP8 microscopy coupled with an Olympus FluoView 300 confocal system
Conical tubes Thermo Scientific 339651, 339652 Sterile tubes of 15 mL and 50 mL
DAPI Abcam ab224589 DAPI staining solution
DMEM/F12 Gibco; Life Technologies Corporation 12500062 DMEM/F-12 50/50, 1X (Dulbecco's Mod. Of Eagle's Medium/Ham's F12 50/50 Mix) with L-glutamine
Dyalisis tubing Sigma-Aldrich D9527 Molecular weight cut-off = 14 kDa
Ethanol Fisher Scientific 64-15-5 Reagent grade
Fetal Bovine Serum Gibco; Life Technologies Corporation 12657011 Research Grade
Fibrinogen Sigma-Aldrich 9001-32-5 Fibrinogen cristalline powder from bovine plasma
Gelatin Sigma-Aldrich 9000-70-8 Gelatin powder from porcine skin
Glycine Sigma-Aldrich 56-40-6 Glycine powder
Hanks Buffered Salt Solution (HBSS) Gibco; Life Technologies Corporation 14175095 No calcium, no magnesium, no phenol red
L-Glutamine Sigma-Aldrich 56-85-9 L-Glutamine crystalline powder
Laminin Sigma-Aldrich 114956-81-9 Laminin 1-2 mg/mL L in 50 mM Tris-HCl
Live dead kit cell imaging kit Thermo Scientific R37601 Green fluorescence in live cells (ex/em 488 nm/515 nm). Red fluorescence in dead cells (ex/em 570 nm/602 nm)
Methacrylic anhydride Sigma-Aldrich 760-93-0 For GelMA preparation
Microtubes Corning Incorporated MCT-150-C Microtubes of 1,5 mL
NaCl Sigma-Aldrich 7647-14-5
Needle 22G Fisher Scientific NC1362045 Sterile blunt needle
Operating scissor Integra Miltex 05–02 Sharp scissor for brain dissection previously sterilized
Paraformaldehyde Sigma-Aldrich 30525-89-4 Paraformaldehyde powder
Penicillin/Streptomycin Gibco; Life Technologies Corporation 15070063 Pen Strep (5,000 Units/ mL Penicillin; 5,000 ug/mL Streptomycin)
Petri dish Corning Incorporated 430591, 430588 Sterile petri dishes of 35 and 100 mm
Phalloidin Abcam ab176753 iFluor 488 reagent
Photoinitiator Sigma-Aldrich 106797-53-9 2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone
Phosphate buffer saline (PBS) Gibco; Life Technologies Corporation 10010023 PBS 1 x, culture grade, no calcium, no magnesium
Poly-L-lysine Sigma-Aldrich 25988-63-0 Poly-L-lysine hydrobromide mol wt 30,000-70,000
Primary antobody Abcam ab4674 Chicken polyclonal to GFAP
Secondary antibody Abcam ab150176 Alexa fluor 594 anti-chicken
Spatula Miltex V973-70 Number 24 cement spatula previously sterilized
Stereomicroscope Fisherbrand 3000038 Microscope for brain dissection
Syringe 5 mL BD 1222C84 Sterile syringe
Syringe filter 2 µm Fisher Scientific 09-740-105 Polypropylene filter for sterilization
Thrombin Sigma-Aldrich 9002–04-4 Thrombin cristalline powder from bovine plasma
Triton X-100 Sigma-Aldrich 9002-93-1 Laboratory grade
Trypsin-EDTA Gibco; Life Technologies Corporation 15400054 Trypsin no phenol red 1 x diluted in PBS
Versene solution Gibco; Life Technologies Corporation 15040066 Versene Solution (0.48 mM) formulated as 0.2 g EDTA(Na4) per liter of PBS
Well plate Thermo Scientific 144530 Sterile 24-well plate

Referências

  1. Di, L., Mannelli, C., Cuzzocrea, S. Astrocytes: Role and functions in brain pathologies. Frontiers in Pharmacology. 10, 1114 (2019).
  2. Kimelberg, H. K., Nedergaard, M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. 7 (4), 338-353 (2010).
  3. Giovannoni, F., Quintana, F. J. The role of astrocytes in CNS inflammation. Trends in Immunology. 41 (9), 805-819 (2020).
  4. Escartin, C., et al. Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience. 24 (3), 312-325 (2021).
  5. Carson, M. J., Thrash, J. C., Walter, B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clinical Neuroscience Research. 6 (5), 237-245 (2006).
  6. Liddelow, S. A., Barres, B. A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity. 46 (6), 957-967 (2017).
  7. Clarke, L. E., et al. Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences of the Unied States of America. 115 (8), 1896-1905 (2018).
  8. Schildge, S., Bohrer, C., Beck, K., Schachtrup, C. Isolation and culture of mouse cortical astrocytes isolation and culture of mouse cortical astrocytes. Journal of Visualized Experiments: JoVE. (71), e50079 (2013).
  9. Duval, K., et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 32 (4), 266-277 (2017).
  10. Knight, E., Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. Journal of Anatomy. 227 (6), 746-756 (2015).
  11. Zhuang, P., Sun, A. X., An, J., Chua, C. K., Chew, S. Y. 3D neural tissue models: From spheroids to bioprinting. Biomaterials. 154, 113-133 (2018).
  12. Balasubramanian, S., Packard, J. A., Leach, J. B., Powell, E. M. Three-dimensional environment sustains morphological heterogeneity and promotes phenotypic progression. Tissue Engineering. Part A. 22 (11-12), 885-898 (2016).
  13. Watson, P. M. D., Kavanagh, E., Allenby, G., Vassey, M. Bioengineered 3D glial cell culture systems and applications for neurodegeneration and neuroinflammation. SLAS Discovery. 22 (5), 583-601 (2017).
  14. Li, Y. E., Jodat, Y. A., Samanipour, R., Zorzi, G., Zhu, K. Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication. , (2020).
  15. Zhou, X., et al. Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Applied Materials & Interfaces. 10 (10), 8993-9001 (2018).
  16. de la Vega, L., et al. 3D bioprinting human induced pluripotent stem cell-derived neural tissues using a novel lab-on-a-printer technology. Applied Sciences. 8 (12), 2414 (2018).
  17. Scheraga, H. A. The thrombin-fibrinogen interaction. Biophysical Chemistry. 112 (2-3), 117-130 (2004).
  18. Ariens, R. A. S., Lai, T., Weisel, J. W., Greenberg, C. S., Grant, P. J. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood. 100 (3), 743-754 (2002).
  19. Yue, K., et al. Synthesis, properties, and biomedical applications of Gelatin Methacryloyl (GelMA) hydrogels. Biomaterials. 73, 254-271 (2015).
  20. de Melo, B. A. G., et al. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia. 117, 60-76 (2020).
  21. Wang, X., et al. Gelatin-based hydrogels for organ 3D bioprinting. Polymers (Basel). 9 (9), 401 (2017).
  22. Murphy, S. V., Atala, A. 3D bioprinting of tissues and organs. Naure. Biotechnology. 32 (8), 773-785 (2014).
  23. de la Vega, L., Lee, C., Sharma, R., Amereh, M., Willerth, S. M. 3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Research Bulletin. 150, 240-249 (2019).
  24. Clavreul, S., et al. Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nature Communications. 10 (1), 4884 (2019).
  25. Hanu, R., et al. Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. American Journal of Physiology. Cell Physiology. 278 (5), 921-930 (2000).
  26. Liu, R., Wang, Z. h., Gou, L., Xu, H. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo. Molecular Medicine Reports. 12 (2), 2598-2606 (2015).
  27. Winter, C. C., Cullen, D. K., Donnell, J. C. O., Song, Y. J., Hernandez, N. S. Three-dimensional tissue engineered aligned astrocyte networks to recapitulate developmental mechanisms and facilitate nervous system regeneration. Journal of Visualized Experiments: JoVE. (131), e55848 (2018).
  28. East, E., Golding, J. P., Phillips, J. B. A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. Journal of Tissue Engineering and Regenerative Medicine. 3 (8), 634-646 (2009).
  29. Hawkinsn, B. T., Grego, S., Sellgren, K. L. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor B1. Brain Research. 1608, 167-176 (2015).
  30. Abelseth, E., et al. 3D printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink. ACS Biomaterials Science and Engineering. 5 (1), 234-243 (2019).
  31. Filippo, T. R. M., et al. CXCL12 N-terminal end is sufficient to induce chemotaxis and proliferation of neural stem/progenitor cells. Stem Cell Research. 11 (2), 913-925 (2013).
  32. Galindo, L. T., et al. Chondroitin sulfate impairs neural stem cell migration through ROCK activation. Molecular Neurobiology. 55 (4), 3185-3195 (2018).
  33. Groll, J., et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 11 (1), 03001 (2018).
  34. Kyle, S., Jessop, Z. M., Al-sabah, A., Whitaker, I. S. Printability of candidate biomaterials for extrusion-based 3D printing: state-of-the-art. Advanced Healthcare Materials. 6 (16), (2017).
  35. Blaeser, A., et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Advanced Healthcare Materials. 5 (3), 326-333 (2016).
  36. Miyawaki, O., Omote, C., Matsuhira, K. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions. Biopolymers. 103 (12), 685-691 (2015).
  37. Shirahama, H., Lee, B. H., Tan, L. P., Cho, N. Precise tuning of facile one-pot Gelatin Methacryloyl (GelMA) synthesis. Science Reports. 6, 31036 (2016).
  38. Antonovaite, N., Beekmans, S. V., Hol, E. M., Wadman, W. J., Iannuzzi, D. Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping. Science Reports. 8 (1), 12517 (2018).
  39. Iwashita, M., et al. Comparative analysis of brain stiffness among amniotes using glyoxal fixation and atomic force microscopy. Frontiers in Cell and Developmental Biology. 8, 574619 (2020).
  40. Guimarães, C. F., Gasperini, L., Marques, A. P., Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nature Reviews. 5, 351-370 (2010).
  41. Ye, W., et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Materials and Design. 192, 108757 (2020).
  42. Wu, Y., et al. The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Bioscience Reports. 39 (1), 1-9 (2019).
  43. Edgar, J. M., Robinson, M., Willerth, S. M. Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomaterialia. 51, 237-245 (2017).
  44. Arulmoli, J., et al. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomaterialia. 43, 122-138 (2016).
  45. Brenner, M. Role of GFAP in CNS Injuries. Neuroscience. Letters. 565, 7-13 (2014).
check_url/pt/62691?article_type=t

Play Video

Citar este artigo
de Melo, B. A. G., Cruz, E. M., Ribeiro, T. N., Mundim, M. V., Porcionatto, M. A. 3D Bioprinting of Murine Cortical Astrocytes for Engineering Neural-Like Tissue. J. Vis. Exp. (173), e62691, doi:10.3791/62691 (2021).

View Video