Summary

短发夹RNA介导的基因敲低在造血干和祖细胞系体外发育的树突状细胞发育研究

Published: March 07, 2022
doi:

Summary

在这里,我们提供了一种方案,用于筛选参与树突状细胞(DC)发展的潜在转录因子,使用shRNA的慢病毒转导来获得稳定的敲低细胞系,用于 体外 DC分化。

Abstract

树突状细胞(DC)是连接先天性和适应性免疫应答的重要抗原呈递细胞。DC是异质的,可分为常规DC(cDC)和浆细胞样DC(pDC)。cDC专门向幼稚T细胞呈递抗原并激活它们。另一方面,pDC可以在病毒感染期间产生大量的I型干扰素(IFN-I)。DC的规范发生在骨髓中DC祖细胞(BM)的早期阶段,由转录因子(TF)网络定义。例如,cDC高度快速ID2,而pDC高度快速E2-2。由于越来越多的DC子集被识别出来,人们越来越有兴趣了解控制DC发展的特定TF。在这里,我们建立了一种方法,通过将携带短发夹RNA(shRNA)的慢病毒递送到永生化的造血干细胞和祖细胞(iHSPCs)系 中,在体外 筛选对DC分化至关重要的TF。在选择和 体外 分化后,通过流式细胞术分析稳定敲低细胞系的cDC和pDC电位。这种方法提供了一个平台,可以在 体外识别可能控制祖细胞DC命运的基因。

Introduction

DC是先天免疫和适应性免疫的关键调节因子1。发展中国家主要分为两个功能不同的群体,即pDC和cDC。此外,cDC包括两个子集,即I型和II型cDC或cDC1和cDC2s2。pDC在小鼠中表达BST2,Siglec-H和CD11c的中间水平34,是在炎症和病毒感染期间可以分泌大量IFN-I的细胞5。由于其强大的IFN-I产生能力,它们也被怀疑在自身免疫性疾病的进展中起关键作用,包括系统性红斑狼疮(SLE)6。cDC1s由小鼠中XCR1,CD8a,CLEC9A和CD103的表面表达定义7,专门用于通过抗原交叉递送激活和极化细胞毒性CD8 + T细胞(CTL),从而启动I型免疫以响应细胞内病原体和癌症89。另一方面,在人类和小鼠中表达CD11b和CD172α(也称为Sirpα)的cDC2s可以激活CD4 + T细胞并促进针对过敏原和寄生虫的II型免疫反应10,以及调节细胞外细菌和微生物群识别后的III型免疫1112

DC的多样化由BM中造血干和祖细胞(HSPCs)的一组TF决定.E2-2(由 Tcf4编码)是pDCs分化和功能的主调节因子1314。相反,DNA结合2(ID2)的抑制剂通过阻断E蛋白活性来驱动cDC规范并抑制pDC的发展15。此外,cDC1s的开发需要IRF8和BATF3,而cDC2的区分高度依赖于IRF416。最近的工作探索了pDC17 和cDC的异质性及其转录调节18。由于直流网络的复杂性,需要建立一个平台来识别控制DC开发和功能的其他TF。

在这里,我们使用一种iHSPC,该iHSPC是通过在BM细胞(也称为Hoxb8-FL细胞)中表达Hoxb8的雌激素调节核易位而产生的19。在β雌二醇和Flt3配体(FL)存在下,iHSPCs可以增殖并保持在未分化阶段,而当β雌二醇退出时,它们在FL存在下开始分化成不同的DC类型19。基于这一特征,我们可以在祖细胞阶段敲低感兴趣的基因,然后检查对pDC和cDC 体外 分化的影响。因此,这种方法是发现调节DC发育和功能的基因的有力工具。

Protocol

慢病毒的处理是按照国立台湾大学医学院环境健康与安全系的规定进行的。 1. 永生化造血干和祖细胞系(iHSPCs)的制备 在含有100 ng / mL FL和1μM β雌二醇的完整RPMI 1640培养基中维持iHSPC细胞系。 每3天以1:10的比例传代细胞。注意:通过补充10%胎牛血清(FBS),5 x 10-5M β巯基乙醇和10μg/ mL庆大霉素,制成完整的RPMI 1640培养基。重组小鼠 FL 也是市售的。…

Representative Results

图中显示了慢病毒载体pLKO.1-Puro的图谱(图1)。在iHSPCs中递送表达shRNA的shRNA慢病毒后,通过iHSPCs中对LacZ(非靶向对照),Tcf4和Id2,RT-qPCR证实的敲低效率显示,与shLacZ iHSPCs相比,tcf4 iHSPCs在shTcf4 iHSPCs中的表达降低(图2A)。另一方面,与shLacZ iHSPCs对照组相比,在shId2 iHSPCs中也观察到Id2表达?…

Discussion

基于慢病毒的shRNA载体通常用于通过病毒转导到细胞中的基因沉默,并允许稳定地整合到宿主基因组中。然而,需要考虑不同细胞类型的各种转导效率,并且已经采取了许多方法来克服这个问题。

聚苯乙烯是一种聚阳离子聚合物,可以中和细胞膜上的电荷,从而增强病毒粒子在转导过程中与细胞的结合20。虽然它是增加转导率的有效方法,但当添加过量时,…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们非常感谢陈志玲博士的技术支持。我们感谢国家RNAi核心设施(台湾中央研究院)提供shRNA慢病毒(http://rnai.genmed.sinica.edu.tw)。这项工作得到了台湾科技部(MOST 108-2320-B-002-037-MY3和MOST 109-2320-B-002-054-MY3)的支持。

Materials

Antibodies
APC/Cy7 anti-mouse CD11c Antibody Biolegend 117324 (Clone: N418)
FITC anti-mouse/human CD11b Antibody Biolegend 101206 (Clone: M1/70)
PE anti-mouse/human B220 Antibody Biolegend 103208 (Clone: RA3-6B2)
Cell culture
1.5 mL Micro tube  ExtraGene TUBE-170-C
12-well tissue culture-treated plate Falcon 353043
Fetal bovine serum (FBS) Corning 35-010-CV
RPMI 1640 medium gibco 11875-085
Reagent
β-estradiol Sigma-Aldrich E2758-250MG
β-mercaptoethanol (β-ME) Sigma-Aldrich M6250
FACS buffer home-made Formula: 1xPBS+0.5 %FBS+0.1%NaN3
Flt3 ligand (FL) home-made
Polybrene Sigma-Aldrich TR-1003-G
Puromycin Invivogen ant-pr-1
TRIsure BIOLINE BIO-38032
shRNA (Taregt sequence/clone ID) Company
shId2  (GCTTATGTCGAATGATAGCAA/TRCN0000054390) The RNAi Consortium (TRC)
shLacZ (CGCGATCGTAATCACCCGAGT/TRCN0000072224) The RNAi Consortium (TRC)
shTcf4 (GCTGAGTGATTTACTGGATTT/TRCN0000012094) The RNAi Consortium (TRC)

Referências

  1. Steinman, R. M., Witmer, M. D. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proceedings of the National Academy of Sciences. 75 (10), 5132-5136 (1978).
  2. Guilliams, M., et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Reviews Immunology. 14 (8), 571-578 (2014).
  3. Blasius, A. L., Cella, M., Maldonado, J., Takai, T., Colonna, M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood. 107 (6), 2474-2476 (2006).
  4. Swiecki, M., Colonna, M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunology Reviews. 234 (1), 142-162 (2010).
  5. Liu, Y. -. J. IPC: Professional Type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annual Review of Immunology. 23 (1), 275-306 (2005).
  6. Panda, S. K., Kolbeck, R., Sanjuan, M. A. Plasmacytoid dendritic cells in autoimmunity. Current Opinion in Immunology. 44, 20-25 (2017).
  7. Durai, V., Murphy, K. M. Functions of murine dendritic cells. Immunity. 45 (4), 719-736 (2016).
  8. Mashayekhi, M., et al. CD8α(+) dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity. 35 (2), 249-259 (2011).
  9. Anderson, D. A., Dutertre, C. -. A., Ginhoux, F., Murphy, K. M. Genetic models of human and mouse dendritic cell development and function. Nature Reviews Immunology. 21 (2), 101-115 (2021).
  10. Plantinga, M., et al. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 38 (2), 322-335 (2013).
  11. Persson, E. K., et al. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity. 38 (5), 958-969 (2013).
  12. Kumamoto, Y., et al. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity. 39 (4), 733-743 (2013).
  13. Cisse, B., et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell. 135 (1), 37-48 (2008).
  14. Grajkowska, L. T., et al. Isoform-specific expression and feedback regulation of E protein TCF4 control dendritic cell lineage specification. Immunity. 46 (1), 65-77 (2017).
  15. Jackson, J. T., et al. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. The EMBO Journal. 30 (13), 2690-2704 (2011).
  16. Suzuki, S., et al. Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha- dendritic cell development. Proceedings of the National Academy of Science U. S. A. 101 (24), 8981-8986 (2004).
  17. Rodrigues, P. F., et al. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nature Immunology. 19 (7), 711-722 (2018).
  18. Brown, C. C., et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell. 179 (4), 846-863 (2019).
  19. Redecke, V., et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nature Methods. 10 (8), 795-803 (2013).
  20. Abe, A., Miyanohara, A., Friedmann, T. Polybrene increases the efficiency of gene transfer by lipofection. Gene Therapy. 5 (5), 708-711 (1998).
  21. Sorgi, F. L., Bhattacharya, S., Huang, L. Protamine sulfate enhances lipid-mediated gene transfer. Gene Therapy. 4 (9), 961-968 (1997).
  22. Kirkling, M. E., et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Reports. 23 (12), 3658-3672 (2018).
  23. Pearce, E. J., Everts, B. Dendritic cell metabolism. Nature Reviews. Immunology. 15 (1), 18-29 (2015).
  24. Wculek, S. K., Khouili, S. C., Priego, E., Heras-Murillo, I., Sancho, D. Metabolic Control of Dendritic Cell Functions: Digesting Information. Frontiers in Immunology. 10 (775), (2019).
  25. Saxton, R. A., Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell. 168 (6), 960-976 (2017).

Play Video

Citar este artigo
Hsiao, Y., Häcker, H., Lee, C. Study of Dendritic Cell Development by Short Hairpin RNA-Mediated Gene Knockdown in a Hematopoietic Stem and Progenitor Cell Line In vitro. J. Vis. Exp. (181), e62730, doi:10.3791/62730 (2022).

View Video