Summary

拟南芥种子表面灭菌的高通量、稳健性和高时间灵活性方法

Published: October 04, 2021
doi:

Summary

提供用于 拟南芥(Arabidopsis) 种子表面灭菌的高通量方案,通过带有真空泵的简单抽吸装置优化液体处理步骤。数百个种子样品可以在一天内进行表面灭菌。

Abstract

拟南芥是迄今为止最广泛用于功能研究的植物模型物种。拟南芥种子的表面灭菌是实现这一目标所需的基本步骤。因此,建立高通量拟南芥种子表面灭菌方法以同时处理数十至数百个样品(例如,转基因品系,生态型或突变体)至关重要。本研究提出了一种基于用普通真空泵构成的自制抽吸装置有效消除管中液体的种子表面灭菌方法。通过大大减少劳动密集型的动手时间,这种方法可以在一天内处理数百个样品,而几乎不费吹灰之力。系列时间过程分析进一步表明,通过保持高发芽率,表面灭菌的时间范围高度灵活。该方法可以很容易地适应于其他种类小种子的表面灭菌,只需根据种子大小和消除液体所需的速度对抽吸装置进行简单的定制。

Introduction

拟南芥是一种二倍体植物,属于芸苔科。其相对较短的生命周期(在长日生长条件下每代两个月),植物体积小,并且每株植物产生数百个种子的自花授粉使其成为第一个基本植物模型物种1,2。此外,其基因组被完全测序3,广泛的反向遗传学工具(饱和的T-DNA、转座子和化学诱变的群体)都可用4、5、6,并且有效的农杆菌介导的转化是建立起来的,以获得足够的转基因品系,用于进一步的下游工作7.因此,在过去的二十年中,使用拟南芥作为模型物种在分子水平上剖析植物生物学的各个方面方面取得了巨大进展,包括自然,遗传和表型变异8,9。

为了在功能上表征拟南芥感兴趣的基因,种子表面灭菌以消除真菌和细菌污染物是许多需要轴线培养的下游方案的先决条件步骤。遗传转化对于过表达10、敲低(RNA-I11)或敲除(基因组编辑12、13)的基因功能、亚细胞定位14、启动子活性15、16、蛋白-蛋白17和蛋白-DNA相互作用18,仅举出最常见的应用,都需要种子表面的灭菌步骤。因此,尽管相对简单,但种子表面灭菌在许多功能分析中起着重要作用。

到目前为止,已经开发了两大类基于气相或液相灭菌的种子表面灭菌方法19。虽然气相种子表面灭菌的通量为中到高,但使用有害试剂氯气作为表面杀菌剂阻碍了其广泛应用。相反,基于液相灭菌的方法依赖于较温和的化学品,如乙醇和漂白剂溶液进行表面灭菌,并且尽管它们的吞吐量本质上低于氯熏蒸,但它们的使用范围更广。通常,通常使用两种使用液体试剂的不同方法。一种广泛使用的方法是基于用乙醇和漂白剂以不同的浓度洗涤不同的时间20,21。另一种方法是基于漂白剂的应用只有21、22。这两种方法主要应用于小规模的种子表面灭菌。然而,在许多实验中,需要筛选许多源自一次转化的拟南芥转基因品系15、23或平行筛选由不同转化产生的许多转基因品系24、25。据我们所知,尚未发表基于液体的高通量种子表面灭菌方法,尽管鲜为人知,但这构成了功能基因组学方法的重要瓶颈。因此,开发安全、稳健和高通量的种子表面灭菌方法是同时成功实现许多基因功能表征的必要和关键步骤。

为此,在目前的研究中,提出了一种改进的拟南芥种子表面灭菌方法。这种方法安全、低成本、高稳健性和高通量,允许从种子表面灭菌开始到培养皿中种子播种结束的一小时内处理96条独立生产线。所展示的方法依赖于广泛使用的基本实验室仪器,如真空泵,消耗性玻璃器皿和塑料器皿。这种改进的方法为科学界提供了一种安全,简单且负担得起的方法来简化种子表面灭菌,其吞吐量足以满足拟南芥和其他非模型植物物种的现代功能基因组学方法。

Protocol

1. 试剂和培养基制备 制备70%乙醇溶液:将737毫升95%工业乙醇加入263毫升蒸馏水中。彻底混合。注意:在非无菌工作台上准备70%乙醇溶液。注意:乙醇高度易燃,会对眼睛造成严重刺激。远离火焰和热源。如果接触眼睛,请用大量清水冲洗。 准备5%漂白剂溶液:将5毫升家用漂白剂(含有约3.5%次氯酸钠,NaClO)加入95毫升无菌蒸馏水中。加入几滴非离子洗涤剂(例如吐温20)并彻…

Representative Results

为了评估整个种子灭菌过程所需的时间,计算了当前方案中96个样品的液体处理时间差,并与传统移液方法进行了比较。结果表明,当前协议节省了时间,将液体处理时间缩短到传统协议的四分之一(表1)。该表进一步强调,与传统方法相比,当前方案中的液体去除时间节省了更多时间,总体减少了八倍。 种子灭菌时间范围的选择较长的灭菌步骤…

Discussion

种子灭菌是拟南芥功能研究的基本步骤。虽然它经常用于许多不同的目的,但对拟南芥高通量种子表面灭菌的研究有限。

到目前为止,吞吐量最高的方法之一是使用漂白剂与浓缩HCl混合产生的氯气。虽然这种方法需要有限的动手时间,但它使用的气体对人类有剧毒27.此外,必须仔细控制要进行表面灭菌的种子数量和表面种子灭菌的持续时间。如果种子太多?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究由特伦托自治省通过E. Mach基金会生态基因组学小组的核心资金资助。

Materials

Aquarium valve Amazon B074CYC5SD Kit including 2 valves and thin-walled tubings. The valve prevents the liquids to go back to the sterile tip
Arabidopsis Col-0 wild-type seeds Nottingham Arabidopsis Stock Center N1093 Wild type seeds (sensitive to kanamycin)
Arabidopsis transgenic line AdoIspS-79 seeds NA NA Transgenic line overexpressing an isoprene synthase gene from Arundo donax transformed in the Col-0 background, resistant to kanamycin (Li et al. (2017) Mol. Biol. Evol., 34, 2583–2599). Available on request from the authors
Microcentrifuge Eppendorf EP022628188 Benchtop microcentrifuge used for spinning down the seeds
Murashige & Skoog medium including vitamins Duchefa M0222 Standard medium for plant sterile culture
Pipette controller Brand 26300 Used to operate the serological pipette
Polyethylene tube 1 Roth 9591.1 Tube for connection from vacuum pump to decantation bottle (inner diameter: 7 mm; outer diameter: 9 mm)
Polyethylene tube 2 Roth 9587.1 Tube for connection from decantation bottle to the aquarium valve  (inner diameter: 5 mm; outer diameter: 7 mm)
Screw cap with connectors Roth PY86.1 2-way dispenser screw cap GL45 in polypropylene for decanting bottle
Serological pipette Brand 27823 Graduated glass (reusable) serological pipette. Disposable pipettes can be used instead
Shakeret al. Qiagen 85300 TissueLyser II bead mill used normally for tissue homogenization. Without the addition of beads to the tubes it works as shaker.
Technical ethanol ITW Reagents (Nova Chimica Srl) 212800 Ethanol 96% v/v partially denatured technical grade
Tween 20 Merck Millipore 655205 Non-ionic detergent acting as surfactant
Universal tubing connectors Roth Y523.1 Can be used to improve/simplify tubing connections
Vacuum pump Merck Millipore WP6222050 Used for making the suction device

Referências

  1. Somerville, C., Koornneef, M. A fortunate choice: The history of Arabidopsis as a model plant. Nature Reviews Genetics. 3 (11), 883-889 (2002).
  2. Koornneef, M., Meinke, D. The development of Arabidopsis as a model plant. Plant Journal. 61 (6), 909-921 (2010).
  3. Initiative, T. A. G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408 (6814), 796-815 (2000).
  4. Krysan, P. J., Young, J. C., Sussman, M. R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell. 11 (12), 2283-2290 (1999).
  5. Speulman, E., et al. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the arabidopsis genome. Plant Cell. 11 (10), 1853-1866 (1999).
  6. Jander, G., et al. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiology. 131 (1), 139-146 (2003).
  7. Zhang, X., Henriques, R., Lin, S. -. S., Niu, Q. -. W., Chua, N. -. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols. 1 (2), 641-646 (2006).
  8. Togninalli, M., et al. AraPheno and the AraGWAS catalog 2020: A major database update including RNA-Seq and knock-out mutation data for Arabidopsis thaliana. Nucleic Acids Research. 48 (1), 1063-1068 (2020).
  9. Lan, Y., et al. AtMAD: Arabidopsis thaliana multi-omics association database. Nucleic Acids Research. 49 (1), 1445-1451 (2021).
  10. Xu, J., Trainotti, L., Li, M., Varotto, C. Overexpression of isoprene synthase affects ABA-and drought-related gene expression and enhances tolerance to abiotic stress. International Journal of Molecular Sciences. 21 (12), 1-21 (2020).
  11. Czarnecki, O., et al. Simultaneous knock-down of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana. Plant Methods. 12 (1), 1-11 (2016).
  12. Yan, L., et al. high-efficiency genome editing in arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Molecular Plant. 8 (12), 1820-1823 (2015).
  13. Liu, Y., Gao, Y., Gao, Y., Zhang, Q. Targeted deletion of floral development genes in Arabidopsis with CRISPR/Cas9 using the RNA endoribonuclease Csy4 processing system. Horticulture Research. 6 (1), (2019).
  14. Grefen, C., et al. Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Molecular Plant. 1 (2), 308-320 (2008).
  15. Gazzani, S., et al. Evolution of MIR168 paralogs in Brassicaceae. BMC Evolutionary Biology. 9 (1), (2009).
  16. Lee, S., Korban, S. S. Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta. 215 (4), 689-693 (2002).
  17. Long, Y., et al. In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature. 548 (7665), 97-102 (2017).
  18. Freire-Rios, A., et al. Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 117 (39), 24557-24566 (2020).
  19. Rivero, L., et al. Handling arabidopsis plants: Growth, preservation of seeds, transformation, and genetic crosses. Methods in Molecular Biology. 1062, 3-25 (2014).
  20. Chen, J. H., et al. Drought and salt stress tolerance of an arabidopsis glutathione S-transferase U17 knock-out mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology. 158 (1), 340-351 (2012).
  21. Li, D. Z., et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences of the United States of America. 108 (49), 19641-19646 (2011).
  22. Mathur, J., Koncz, C. Establishment and maintenance of cell suspension cultures. Arabidopsis Protocols. Methods in Molecular Biology. 82, 27-30 (1998).
  23. Li, M., Cappellin, L., Xu, J., Biasioli, F., Varotto, C. High-throughput screening for in planta characterization of VOC biosynthetic genes by PTR-ToF-MS. Journal of Plant Research. 133 (1), 123-131 (2020).
  24. Li, M., et al. In planta recapitulation of isoprene synthase evolution from ocimene synthases. Molecular Biology and Evolution. 34 (10), 2583-2599 (2017).
  25. Li, M., et al. Evolution of isoprene emission in Arecaceae (palms). Evolutionary Applications. 14, 902-914 (2020).
  26. Murashige, T., Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 15 (3), 473-497 (1962).
  27. Bent, A. Arabidopsis thaliana floral dip transformation method. Methods in Molecular Biology. 343, 87-104 (2006).
  28. Lundberg, D. S., et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 488 (7409), 86-90 (2012).
  29. Tkacz, A., Cheema, J., Chandra, G., Grant, A., Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME Journal. 9 (11), 2349-2359 (2015).
  30. Singh, N., Gaddam, S. R., Singh, D., Trivedi, P. K. Regulation of arsenic stress response by ethylene biosynthesis and signaling in Arabidopsis thaliana. Environmental and Experimental Botany. 185, 104408 (2021).
  31. Lindsey, B. E., Rivero, L., Calhoun, C. S., Grotewold, E., Brkljacic, J. Standardized method for high-throughput sterilization of Arabidopsis seeds. Journal of Visualized Experiments: JOVE. (128), e56587 (2017).
  32. Acemi, A., Özen, F. Optimization of in vitro asymbiotic seed germination protocol for Serapias vomeracea. The EuroBiotech Journal. 3 (3), 143-151 (2019).
check_url/pt/62893?article_type=t

Play Video

Citar este artigo
Li, M., Yu, J., Barbaro, E., Varotto, C. High-throughput, Robust and Highly Time-flexible Method for Surface Sterilization of Arabidopsis Seeds. J. Vis. Exp. (176), e62893, doi:10.3791/62893 (2021).

View Video