Summary

Optical Coherence Tomography Based Biomechanical Fluid-Structure Interaction Analysis of Coronary Atherosclerosis Progression

Published: January 15, 2022
doi:

Summary

There is a need to determine which atherosclerotic lesions will progress in the coronary vasculature to guide intervention before myocardial infarction occurs. This article outlines the biomechanical modeling of arteries from Optical Coherence Tomography using fluid-structure interaction techniques in a commercial finite element solver to help predict this progression.

Abstract

In this paper, we present a complete workflow for the biomechanical analysis of atherosclerotic plaque in the coronary vasculature. With atherosclerosis as one of the leading causes of global death, morbidity and economic burden, novel ways of analyzing and predicting its progression are needed. One such computational method is the use of fluid-structure interaction (FSI) to analyze the interaction between the blood flow and artery/plaque domains. Coupled with in vivo imaging, this approach could be tailored to each patient, assisting in differentiating between stable and unstable plaques. We outline the three-dimensional reconstruction process, making use of intravascular Optical Coherence Tomography (OCT) and invasive coronary angiography (ICA). The extraction of boundary conditions for the simulation, including replicating the three-dimensional motion of the artery, is discussed before the setup and analysis is conducted in a commercial finite element solver. The procedure for describing the highly nonlinear hyperelastic properties of the artery wall and the pulsatile blood velocity/pressure is outlined along with setting up the system coupling between the two domains. We demonstrate the procedure by analyzing a non-culprit, mildly stenotic, lipid-rich plaque in a patient following myocardial infarction. Established and emerging markers related to atherosclerotic plaque progression, such as wall shear stress and local normalized helicity, respectively, are discussed and related to the structural response in the artery wall and plaque. Finally, we translate the results to potential clinical relevance, discuss limitations, and outline areas for further development. The method described in this paper shows promise for aiding in the determination of sites at risk of atherosclerotic progression and, hence, could assist in managing the significant death, morbidity, and economic burden of atherosclerosis.

Introduction

Coronary artery disease (CAD) is the most common type of heart disease and one of the leading causes of death and economic burden globally1,2. In the United States, roughly one in every eight deaths is attributed to CAD3,4, while most global deaths from CAD are now seen in low- and middle-income countries5. Atherosclerosis is the predominant driver of these deaths, with plaque rupture or erosion leading to coronary artery occlusion and acute myocardial infarction (AMI)6. Even after revascularization of culprit coronary lesions, patients have substantial risk of recurrent major adverse cardiovascular events (MACE) after AMI, largely due to the concomitant presence of other non-culprit plaques that are also vulnerable to rupture7. Intracoronary imaging provides an opportunity to detect these high-risk plaques8. Although intravascular ultrasound (IVUS) is the gold standard for evaluating plaque volume, it has limited resolution to identify microstructural features of vulnerable plaque in contrast to the high resolution (10-20 µm) of optical coherence tomography (OCT). A thin and inflamed fibrous cap overlying a large lipid pool has been demonstrated to be the most important signature of a vulnerable plaque9 and is best identified and measured by OCT among currently available intracoronary imaging modalities10. Importantly, OCT is also able to assess other high-risk plaque features, including: lipid arc; macrophage infiltration; presence of thin cap fibroatheroma (TCFA), which is defined as lipid-rich core with overlying thin fibrous cap (<65 µm); spotty calcification; and plaque microchannels. OCT detection of these high-risk features in non-culprit plaques post-AMI has been associated with up to a 6-fold increased risk of future MACE11. However, despite this, the ability of angiography and OCT imaging to predict which coronary plaques will progress and ultimately rupture or erode is limited, with positive predictive values of only 20%-30%8. This limited predictive ability hinders clinical decision-making around which non-culprit plaques to treat (e.g., by stenting)7,12.

In addition to patient factors and the biological characteristics of plaque, biomechanical forces in the coronary arteries are also important determinants of plaque progression and instability13. One technique that shows promise for helping to comprehensively evaluate these forces is fluid-structure interaction (FSI)14 simulation. Wall shear stress (WSS), also called endothelial shear stress, has been a traditional focal point for coronary biomechanics research15, with a general understanding that WSS plays an etiological role in atherosclerosis formation16. Predominantly simulated using computational fluid dynamics (CFD) techniques, low WSS regions have been associated with intimal thickening17, vascular remodeling18 and the prediction of lesion progression19 and future MACE20. Recent advances in these analyses suggest the underlying WSS vector field topology21, and its multidirectional characteristics22, as a better predictor of atherosclerosis risk than WSS magnitude alone. However, WSS only captures a glimpse of the overall biomechanical system at the lumen wall, and much like imaging modalities, no one biomechanical metric can reliably discern high risk atherosclerotic features.

Further metrics are emerging as potentially important in atherosclerosis formation. Intraluminal flow characteristics23 are one such example, with helical flow, quantified through various indices24, suggested as playing an atheroprotective role by suppressing disturbed flow patterns25,26. While CFD techniques can analyze these flow characteristics and present a wide range of useful results, they do not consider the underlying interactions between the blood flow, artery structure and general heart motion. This simplification of the dynamic system to a rigid wall misses potentially critical results such as fibrous cap stress. While the debate both for and against the need for FSI over CFD continues27,28,29, many comparisons neglect to include the impact of ventricle function. This limitation can be overcome with FSI, which has shown that dynamic bending and compression exerted on the artery through the influence of the ventricle function can significantly impact plaque and artery structural stress as well as flow metrics such as WSS30,31,32. This is important as structural stresses are also a key metric for analyzing and predicting plaque rupture33,34 and have been suggested to co-locate with regions of plaque increase14,35. Capturing these interactions allows for a more realistic representation of the coronary environment and the potential mechanisms of disease progression.

Addressing this, here we outline the process of developing a patient-specific geometry from OCT imaging36 and the setting up and running of an artery FSI simulation using a commercial finite element solver. The process to manually extract the lumen, lipid and outer artery wall is detailed before the three-dimensional computational reconstruction of the patient's artery. We outline the simulation set-up, coupling and the process of comparing baseline, and follow-up OCT imaging parameters to determine lesion progression. Finally, we discuss the post-processing of numerical results and how these data may have clinical relevance by comparing the biomechanical results with lesion progression/regression. The overall method is demonstrated on non-culprit, mildly stenotic, lipid-rich plaques in the right coronary artery (RCA) of a 58-year-old Caucasian male patient who presented with an acute non-ST elevation myocardial infarction in the setting of hypertension, type 2 diabetes mellitus, obesity (BMI 32.6) and a family history of premature CAD. Coronary angiography and OCT imaging were performed during his initial admission, and then 12 months later as part of an ongoing clinical trial (COCOMO-ACS trial ACTRN12618000809235). We anticipate that this technique can be further refined and used for identifying coronary plaques that are at high risk of progressing.

Protocol

The following deidentified data was analyzed from a patient recruited into the ongoing COCOMO-ACS randomized-controlled trial (ACTRN12618000809235; Royal Adelaide Hospital HREC reference number: HREC/17/RAH/366), with additional ethics approval granted by Central Adelaide Local Health Network (CALHN) Research Services for the purpose of biomechanical simulation (CALHN Reference Number 14179). Figure 1 summarizes the complete workflow outlined in the following protocol, which can be applied t…

Representative Results

Representative results are presented for both established and emerging biomechanical markers of atherosclerosis progression. Established metrics such as WSS and WSS-derived results (including time averaged wall shear stress (TAWSS) and oscillatory shear index (OSI)) are visualized in Figure 10. The wall shear stress over the cardiac cycle is largely driven by the blood velocity, however, artery geometry and its motion/contraction play a significant role in its spatial distribution. This can …

Discussion

The use of FSI methods to analyze coronary biomechanics is still a developing field from both numerical modelling and clinical result aspects. Here we have described the outline of setting up a patient specific FSI analysis, based on the finite element/finite volume methods, utilizing OCT and angiographic imaging. While the method we describe here utilizes a commercial finite element solver, the procedure can be applied to any FSI capable software. There are still several limitations to be improved upon in the methodolog…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the support provided by The University of Adelaide, Royal Adelaide Hospital (RAH) and the South Australian Health and Medical Research Institute (SAHMRI). The COCOMO-ACS trial is an investigator-initiated study funded by project grants from the National Health and Medical Research Council (NHMRC) of Australia (ID1127159) and National Heart Foundation of Australia (ID101370). H.J.C. is supported by a scholarship from the Westpac Scholars Trust (Future Leaders Scholarship) and acknowledges support from The University of Adelaide, School of Mechanical Engineering and the Department of Education, Skills and Employment Research Training Program (RTP) scholarship. S.J.N. receives a Principal Research Fellowship from the NHMRC (ID1111630). P.J.P. receives a Level 2 Future Leader Fellowship from the National Heart Foundation of Australia (FLF102056) and Level 2 Career Development Fellowship from the NHMRC (CDF1161506).

Materials

ANSYS Workbench (version 19.0) ANSYS Commercial finite element solver
MATLAB (version 2019b) Mathworks Commercial programming platform
MicroDicom/ImageJ MicroDicom/ImageJ Open Source DICOM reader
Visual Studio (version 2019) Microsoft Commercial Integrated Development Environment

Referências

  1. American Heart Association. Cardiovascular disease: A costly burden for America projections through 2035. American Heart Association. , (2017).
  2. Gheorghe, A., et al. The economic burden of cardiovascular disease and hypertension in low-and middle-income countries: A systematic review. BMC Public Health. 18 (1), 975 (2018).
  3. Virani, S. S., et al. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation. 141 (9), 139 (2020).
  4. Benjamin, E. J., et al. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation. 139 (10), 56 (2019).
  5. Cardiovascular diseases (CVDs). World Health Organisation Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2017)
  6. Calvert, J. W., Willis, M. S., Homeister, J. W., Stone, J. R. . Cellular and Molecular Pathobiology of Cardiovascular Disease. , 79-100 (2014).
  7. Baumann, A. A. W., Mishra, A., Worthley, M. I., Nelson, A. J., Psaltis, P. J. Management of multivessel coronary artery disease in patients with non-ST-elevation myocardial infarction: a complex path to precision medicine. Therapeutic Advances in Chronic Disease. 11, 1-23 (2020).
  8. Montarello, N. J., Nelson, A. J., Verjans, J., Nicholls, S. J., Psaltis, P. J. The role of intracoronary imaging in translational research. Cardiovascular Diagnosis and Therapy. 10 (5), 1480-1507 (2020).
  9. Narula, J., et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. Journal of the American College of Cardiology. 61 (10), 1041-1051 (2013).
  10. Kim, S. -. J., et al. Reproducibility of in vivo measurements for fibrous cap thickness and lipid arc by OCT. JACC: Cardiovascular Imaging. 5 (10), 1072-1074 (2012).
  11. Prati, F., et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. European Heart Journal. 41 (3), 383-391 (2019).
  12. Nelson, A. J., Ardissino, M., Psaltis, P. Current approach to the diagnosis of atherosclerotic coronary artery disease: more questions than answers. Therapeutic Advances in Chronic Disease. 10, 1-20 (2019).
  13. Carpenter, H. J., Gholipour, A., Ghayesh, M. H., Zander, A. C., Psaltis, P. J. A review on the biomechanics of coronary arteries. International Journal of Engineering Science. 147, (2020).
  14. Wang, L., et al. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study. Journal of Biomechanics. 68, 43-50 (2018).
  15. Shishikura, D., et al. The relationship between segmental wall shear stress and lipid core plaque derived from near-infrared spectroscopy. Atherosclerosis. 275, 68-73 (2018).
  16. Cameron, J. N., et al. Exploring the relationship between biomechanical stresses and coronary atherosclerosis. Atherosclerosis. 302, 43-51 (2020).
  17. Giannoglou, G. D., Soulis, J. V., Farmakis, T. M., Farmakis, D. M., Louridas, G. E. Haemodynamic factors and the important role of local low static pressure in coronary wall thickening. International Journal of Cardiology. 86 (1), 27-40 (2002).
  18. Stone, P. H., et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation. 108 (4), 438-444 (2003).
  19. Bourantas Christos, V., et al. Shear stress estimated by quantitative coronary angiography predicts plaques prone to progress and cause events. JACC: Cardiovascular Imaging. 13 (10), 2206-2219 (2020).
  20. Stone, P. H., et al. Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: The PROSPECT study. JACC: Cardiovascular Imaging. 11 (3), 462-471 (2018).
  21. Arzani, A., Gambaruto, A. M., Chen, G., Shadden, S. C. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows. Biomechanics and Modeling in Mechanobiology. 16 (3), 787-803 (2017).
  22. Hoogendoorn, A., et al. Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. Cardiovascular Research. 116 (6), 1136-1146 (2020).
  23. Chiastra, C., et al. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk. Journal of Biomechanics. 58, 79-88 (2017).
  24. Gallo, D., Steinman, D. A., Bijari, P. B., Morbiducci, U. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. Journal of Biomechanics. 45 (14), 2398-2404 (2012).
  25. De Nisco, G., et al. The atheroprotective nature of helical flow in coronary arteries. Annals of Biomedical Engineering. 47 (2), 425-438 (2019).
  26. De Nisco, G., et al. The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis. 300, 39-46 (2020).
  27. Eslami, P., et al. Effect of wall elasticity on hemodynamics and wall shear stress in patient-specific simulations in the coronary arteries. Journal of Biomechanical Engineering. 142 (2), (2019).
  28. Malvè, M., García, A., Ohayon, J., Martínez, M. A. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD. International Communications in Heat and Mass Transfer. 39 (6), 745-751 (2012).
  29. Chiastra, C., Migliavacca, F., Martínez, M. &. #. 1. 9. 3. ;., Malvè, M. On the necessity of modelling fluid-structure interaction for stented coronary arteries. Journal of the Mechanical Behavior of Biomedical Materials. 34, 217-230 (2014).
  30. Carpenter, H., Gholipour, A., Ghayesh, M., Zander, A. C., Psaltis, P. In vivo based fluid-structure interaction biomechanics of the left anterior descending coronary artery. Journal of Biomechanical Engineering. 143 (8), (2021).
  31. Tang, D., et al. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. Journal of Biomechanical Engineering. 131 (6), (2009).
  32. Gholipour, A., Ghayesh, M. H., Zander, A. C., Psaltis, P. J. In vivo based biomechanics of right and left coronary arteries. International Journal of Engineering Science. 154, (2020).
  33. Pei, X., Wu, B., Li, Z. -. Y. Fatigue crack propagation analysis of plaque rupture. Journal of Biomechanical Engineering. 135 (10), (2013).
  34. Wang, L., et al. IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis. Annals of Biomedical Engineering. 43 (1), 107-121 (2015).
  35. Fan, R., et al. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study. BioMedical Engineering OnLine. 13 (1), 32 (2014).
  36. Migliori, S., et al. Application of an OCT-based 3D reconstruction framework to the hemodynamic assessment of an ulcerated coronary artery plaque. Medical Engineering & Physics. 78, 74-81 (2020).
  37. DIGITIZE07. MATLAB Central File Exchange Available from: https://www.mathworks.com/matlabcentral/fileexchange/14703-digitize07 (2021)
  38. interparc. MATLAB Central File Exchange Available from: https://www.mathworks.com/matlabcentral/fileexchange/34874-interparc (2021)
  39. Davies Justin, E., et al. Evidence of a dominant backward-propagating "suction" wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 113 (14), 1768-1778 (2006).
  40. Campbell, I. C., et al. Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. Journal of Biomechanical Engineering. 134 (5), (2012).
  41. Chang, W. -. T., et al. Ultrasound based assessment of coronary artery flow and coronary flow reserve using the pressure overload model in mice. Journal of Visualized Experiments: JoVE. (98), (2015).
  42. Holzapfel, G. A., Sommer, G., Gasser, C. T., Regitnig, P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology-Heart and Circulatory Physiology. 289 (5), 2048-2058 (2005).
  43. Versluis, A., Bank, A. J., Douglas, W. H. Fatigue and plaque rupture in myocardial infarction. Journal of Biomechanics. 39 (2), 339-347 (2006).
  44. ANSYS Inc. ANSYS Academic Research Mechanical, Release 19.0, Mechanical APDL Theory Reference, Structures with Material Nonlinearities, Hyperelasticity, Mooney-Rivlin. ANSYS Inc. , (2019).
  45. Dong, J., Sun, Z., Inthavong, K., Tu, J. Fluid-structure interaction analysis of the left coronary artery with variable angulation. Computer Methods in Biomechanics and Biomedical Engineering. 18 (14), 1500-1508 (2015).
  46. Johnston, B. M., Johnston, P. R., Corney, S., Kilpatrick, D. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. Journal of Biomechanics. 37 (5), 709-720 (2004).
  47. Abbasian, M., et al. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Computer Methods and Programs in Biomedicine. 186, (2020).
  48. Soulis, J. V., et al. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Medical Engineering & Physics. 30 (1), 9-19 (2008).
  49. Liu, B., Tang, D. Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries. Molecular & Cellular Biomechanics: MCB. 8 (1), (2011).
  50. Morbiducci, U., Ponzini, R., Grigioni, M., Redaelli, A. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. Journal of Biomechanics. 40 (3), 519-534 (2007).
  51. Morbiducci, U., et al. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Annals of Biomedical Engineering. 37 (3), (2009).
  52. Sughimoto, K., et al. Effects of arterial blood flow on walls of the abdominal aorta: Distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging. Heart and Vessels. 31 (7), 1168-1175 (2016).
  53. Ku, D. N., Giddens, D. P., Zarins, C. K., Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5 (3), 293-302 (1985).
  54. Mazzi, V., et al. Wall shear stress topological skeleton analysis in cardiovascular flows: Methods and applications. Mathematics. 9 (7), 720 (2021).
  55. Moraes, M. C., Cardenas, D. A. C., Furuie, S. S. Automatic lumen segmentation in IVOCT images using binary morphological reconstruction. BioMedical Engineering OnLine. 12 (1), 78 (2013).
  56. Akyildiz, A. C., et al. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Computer Methods in Biomechanics and Biomedical Engineering. 19 (7), 771-779 (2016).
  57. Tang, D., et al. Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. Journal of Biomechanical Engineering. 127 (7), 1185-1194 (2005).
  58. Li, J., et al. Multimodality intravascular imaging of high-risk coronary plaque. JACC: Cardiovascular Imaging. , (2021).
  59. Bourantas Christos, V., et al. Utility of multimodality intravascular imaging and the local hemodynamic forces to predict atherosclerotic disease progression. JACC: Cardiovascular Imaging. 13 (4), 1021-1032 (2020).
  60. Liao, R., Luc, D., Sun, Y., Kirchberg, K. 3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. The International Journal of Cardiovascular Imaging. 26 (7), 733-749 (2010).
  61. Holzapfel, G. A., Gasser, T. C., Ogden, R. W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids. 61 (1), 1-48 (2000).
  62. Gholipour, A., Ghayesh, M. H., Zander, A., Mahajan, R. Three-dimensional biomechanics of coronary arteries. International Journal of Engineering Science. 130, 93-114 (2018).
  63. Akyildiz, A. C., et al. Effects of intima stiffness and plaque morphology on peak cap stress. BioMedical Engineering OnLine. 10 (1), 25 (2011).
  64. Baranger, J., Mertens, L., Villemain, O. Blood flow imaging with ultrafast doppler. Journal of Visualized Experiments: JoVE. (164), (2020).
  65. Westra, J., et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow feserve: The FAVOR II Europe-Japan study. Journal of the American Heart Association. 7 (14), (2018).
  66. Torii, R., et al. The impact of plaque type on strut embedment/protrusion and shear stress distribution in bioresorbable scaffold. European Heart Journal – Cardiovascular Imaging. 21 (4), 454-462 (2020).
  67. Peirlinck, M., et al. Precision medicine in human heart modeling. Biomechanics and Modeling in Mechanobiology. , 1-29 (2021).
  68. Franke, K. B., et al. Current state-of-play in spontaneous coronary artery dissection. Cardiovascular Diagnosis and Therapy. 9 (3), 281 (2019).
  69. Alber, M., et al. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digital Medicine. 2 (1), 115 (2019).
check_url/pt/62933?article_type=t

Play Video

Citar este artigo
Carpenter, H. J., Ghayesh, M. H., Zander, A. C., Ottaway, J. L., Di Giovanni, G., Nicholls, S. J., Psaltis, P. J. Optical Coherence Tomography Based Biomechanical Fluid-Structure Interaction Analysis of Coronary Atherosclerosis Progression. J. Vis. Exp. (179), e62933, doi:10.3791/62933 (2022).

View Video