Summary

Single-Molecule Imaging of EWS-FLI1 Condensates Assembling on DNA

Published: September 08, 2021
doi:

Summary

Here, we describe the use of the single-molecule imaging method, DNA Curtains, to study the biophysical mechanism of EWS-FLI1 condensates assembling on DNA.

Abstract

The fusion genes resulting from chromosomal translocation have been found in many solid tumors or leukemia. EWS-FLI1, which belongs to the FUS/EWS/TAF15 (FET) family of fusion oncoproteins, is one of the most frequently involved fusion genes in Ewing sarcoma. These FET family fusion proteins typically harbor a low-complexity domain (LCD) of FET protein at their N-terminus and a DNA-binding domain (DBD) at their C-terminus. EWS-FLI1 has been confirmed to form biomolecular condensates at its target binding loci due to LCD-LCD and LCD-DBD interactions, and these condensates can recruit RNA polymerase II to enhance gene transcription. However, how these condensates are assembled at their binding sites remains unclear. Recently, a single-molecule biophysics method-DNA Curtains-was applied to visualize these assembling processes of EWS-FLI1 condensates. Here, the detailed experimental protocol and data analysis approaches are discussed for the application of DNA Curtains in studying the biomolecular condensates assembling on target DNA.

Introduction

Transcriptional regulation is a crucial step for precise gene expression in living cells. Many factors, such as chromosomal modification, transcription factors (TFs), and non-coding RNAs, participate in this complicated process1,2,3. Among these factors, TFs contribute to the specificity of transcriptional regulation by recognizing and binding to specific DNA sequences known as promoters or enhancers and subsequently recruiting other functional proteins to activate or repress transcription4,5,6,7. How these TFs manage to search for their target sites in the human genome and interact with DNA coated with histones and non-histone DNA-binding proteins has perplexed scientists for decades. In the past few years, several classical models for the target search mechanism of TFs have been built to describe how they "slide," "hop," "jump," or "intersegment transfer" along the DNA chain8,9,10,11. These models are focused on the searching behavior on the DNA of one single TF molecule. However, recent studies show that some TFs undergo liquid-liquid phase separation (LLPS) either alone in the nucleus or with the Mediator complex12. The observed droplets of TFs are associated with the promoter or enhancer regions, highlighting the role of biomolecular condensate formation in transcription and the three-dimensional genome13,14,15. These biomolecular condensates are linked to membrane-lacking compartments in vivo and in vitro. They are formed via LLPS, in which modular biomacromolecules and intrinsically disordered regions (IDRs) of proteins are two main driving forces of multivalent interactions16. Thus, TFs not only search DNA but also function synergistically within these condensates4,17,18. To date, the biophysical property of these transcription condensates on DNA remains unclear.

Therefore, this study aimed to apply a single-molecule method-DNA Curtains-to directly image the formation and dynamics of the transcription condensates formed by TFs on DNA in vitro. DNA Curtains, a high-throughput in vitro imaging platform to study the interaction between proteins and DNA, has been applied in DNA repair19,20,21, target search22, and LLPS17,23,24. The flowcell of DNA Curtains is coated with biotinylated lipid bilayers to passivate the surface and allow the biomolecules to diffuse on the surface. The nanofabricated zig-zag patterns limit the movement of DNA. Biotinylated Lambda DNA substrates can align along the barrier edges and be stretched by the oriented buffer flow. The same starting and ending sequences of all the molecules allow the tracking of the protein on DNA and describe the position distribution of the binding events25,26. Moreover, the combination of DNA Curtains with total internal reflection fluorescence microscopy (TIRFM) helps minimize the background noise and detect signals at a single-molecule level. Thus, DNA Curtains could be a promising method to investigate the dynamics of transcription condensate formation on DNA motifs. This paper describes the example of an FUS/EWS/TAF15 (FET) family fusion oncoprotein, EWS-FLI1, generated by chromosomal translocation. Lambda DNA containing 25× GGAA-the binding sequence of EWS-FLI127– was used as the DNA substrate in the DNA Curtains experiments to observe how EWS-FLI1 molecules undergo LLPS on DNA. This manuscript discusses the experimental protocol and data analysis methods in detail.

Protocol

1. Preparation of the lipid bilayer master mix Rinse glass vials with double-distilled water (ddH2O) and 99% ethanol and dry them in a 60 °C drying oven. Make the lipid master mix by dissolving 1 g of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 100 mg of polyethylene glycol-reacted (PEGylated) lipids (18:1 of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (ammonium salt) (PEG2000 DOPE) and 25 mg of biotinylated lipids (18:1 of 1,2-dioleoyl-s…

Representative Results

The schematic of DNA Curtains is shown in Figure 1A, Figure 1B, and Figure 1D. The cloned target sequence containing 25 uninterrupted repeats of GGAA is found in the NORB1 promoter in Ewing sarcoma. This target sequence is crucial for EWS-FLI1 recruitment28. EWS-FLI1 molecules were visualized by detecting the mCherry-labeled EWS-FLI1 signals obtained with a 561 nm laser (Figure 1…

Discussion

As single-molecule approaches are extremely sensitive to the contents of the reaction system, extra effort must be invested to ensure good quality of all the materials and solutions during the DNA Curtains experiments, especially the lipids prepared in sections 1 and 2 and the buffers used in section 5. Reagents of higher purity must be used to prepare buffers, and buffers must be freshly prepared for the single-molecule assay

When 500 nM mCherry-labeled EWS-FLI1 was flushed into the chamber, …

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by NSFC Grants No. 31670762 (Z.Q.).

Materials

488 nm diodepumped solid-state laser Coherent OBIS488LS
561 nm diodepumped solid-state laser Coherent OBIS561LS
Agar Rhawn R003215-50g
biotinylated DOPE Avanti 870273P
Bovine Serum Albumin Sigma A7030
Chloroform Amresco 1595C027
Coating Electra 92 Allresist GmbH AR-PC 5090.02 The conductive protective coating
Deoxyribonuclease I bovine Sigma D5139-2MG
DOPC Avanti 850375P
DTT Sigma D9779
Glass coverslip Fisher Scientific 12-544-7
Hellmanex III Sigma Z805939-1EA
KCl Sigma 60130
Lambda DNA NEB N3013S
Lambda Packing Extracts Epicentre MP5120
MgCl2 Sigma M2670
NaCl Sigma s3014
Nanoport Idex N-333-01
NheI-HF NEB R3131S
Nikon Inverted Microscope Nikon Eclipse Ti
NZCYM Broth Sigma N3643-250G
PEG-2000 DOPE Avanti 880130P-1G
PEG-8000 Amresco 25322-68-3
PMMA 200K, ETHYL LACTATE 4% Allresist GmbH AR-P 649.04
PMMA 950K, ANISOLE 2% Allresist GmbH AR-P 672.02
Prime 95B Scientific CMOS camera PHOTOMETRICS Prime95B
proteinase K NEB P8107S
Silica glass slide G.Finkenbeiner
Six-way injection valve Idex MXP9900-000
Streptavidin Thermo S888 Diluted with ddH2O
Syringe pump Harvard Apparatus Pump11 Elite
T4 DNA Ligase NEB M0202S
Tris base Sigma T6066
XhoI NEB R0146V
YOYO-1 Iodide (491/509) Invitrogen Y3601 Diluted with DMSO

Referências

  1. Cramer, P. Organization and regulation of gene transcription. Nature. 573 (7772), 45-54 (2019).
  2. Zhang, Y., Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development. 15 (18), 2343-2360 (2001).
  3. Wang, X., et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 454 (7200), 126-130 (2008).
  4. Alexander, K. A., et al. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Molecular Cell. 81 (8), 1666-1681 (2021).
  5. Matsui, T., Segall, J., Weil, P. A., Roeder, R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase-II. Journal of Biological Chemistry. 255 (24), 1992-1996 (1980).
  6. Stadhouders, R., Filion, G. J., Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature. 569 (7756), 345-354 (2019).
  7. Peng, Y., Zhang, Y. Enhancer and super-enhancer: Positive regulators in gene transcription. Animal Models and Experimental Medicine. 1 (3), 169-179 (2018).
  8. Lambert, S. A., et al. The human transcription factors. Cell. 172 (4), 650-665 (2018).
  9. Normanno, D., Dahan, M., Darzacq, X. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression. Biochimica et Biophysica Acta. 1819 (6), 482-493 (2012).
  10. Berg, O. G., Winter, R. B., von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. Bioquímica. 20 (24), 6929-6948 (1981).
  11. Loverdo, C., et al. Quantifying hopping and jumping in facilitated diffusion of DNA-binding proteins. Physical Review Letters. 102 (18), 188101 (2009).
  12. Boija, A., et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 175 (7), 1842-1855 (2018).
  13. Sabari, B. R., et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 361 (6400), (2018).
  14. Kim, S., Shendure, J. Mechanisms of interplay between transcription factors and the 3D genome. Molecular Cell. 76 (2), 306-319 (2019).
  15. Shrinivas, K., et al. Enhancer features that drive formation of transcriptional condensates. Molecular Cell. 75 (3), 549-561 (2019).
  16. Banani, S. F., Lee, H. O., Hyman, A. A., Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews. Molecular Cell Biology. 18 (5), 285-298 (2017).
  17. Zhou, H., et al. Mechanism of DNA-induced phase separation for transcriptional repressor VRN1. Angewandte Chemie International Edition. 58 (15), 4858-4862 (2019).
  18. Rao, S., Ahmad, K., Ramachandran, S. Cooperative binding between distant transcription factors is a hallmark of active enhancers. Molecular Cell. 81 (8), 1651-1665 (2021).
  19. Qi, Z., et al. DNA sequence alignment by microhomology sampling during homologous recombination. Cell. 160 (5), 856-869 (2015).
  20. Qi, Z., Greene, E. C. Visualizing recombination intermediates with single-stranded DNA curtains. Methods. 105, 62-74 (2016).
  21. Ma, C. J., Gibb, B., Kwon, Y., Sung, P., Greene, E. C. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Research. 45 (2), 749-761 (2017).
  22. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507 (7490), 62-67 (2014).
  23. Larson, A. G., et al. Liquid droplet formation by HP1 alpha suggests a role for phase separation in heterochromatin. Nature. 547, 236-240 (2017).
  24. Zuo, L., et al. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nature Communications. 12 (1), 1491 (2021).
  25. Collins, B. E., Ye, L. F., Duzdevich, D., Greene, E. C. DNA curtains: novel tools for imaging protein-nucleic acid interactions at the single-molecule level. Methods in Cell Biology. 123, 217-234 (2014).
  26. Greene, E. C., Wind, S., Fazio, T., Gorman, J., Visnapuu, M. -. L. DNA curtains for high-throughput single-molecule optical imaging. Methods in Enzymology. 472, 293-315 (2010).
  27. Gangwal, K., Close, D., Enriquez, C. A., Hill, C. P., Lessnick, S. L. Emergent properties of EWS/FLI regulation via GGAA microsatellites in Ewing’s sarcoma. Genes & Cancer. 1 (2), 177-187 (2010).
  28. Sizemore, G. M., Pitarresi, J. R., Balakrishnan, S., Ostrowski, M. C. The ETS family of oncogenic transcription factors in solid tumours. Nature Reviews. Cancer. 17 (6), 337-351 (2017).
  29. Roy, R., Hohng, S., Ha, T. A practical guide to single-molecule FRET. Nature Methods. 5 (6), 507-516 (2008).
  30. Huang, B., Bates, M., Zhuang, X. W. Super-resolution fluorescence microscopy. Annual Review of Biochemistry. 78, 993-1016 (2009).
  31. Bustamante, C., Bryant, Z., Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature. 421 (6921), 423-427 (2003).
  32. Bustamante, C., Chemla, Y. R., Moffitt, J. R., Selvin, P. R., Ha, T. High-resolution dual-trap optical tweezers with differential detection. Single-Molecule Techniques: A Laboratory Manual. , (2008).
  33. Zhao, Y. L., Jiang, Y. Z., Qi, Z. Visualizing biological reaction intermediates with DNA curtains. Journal of Physics D: Applied Physics. 50 (15), 153001 (2017).
check_url/pt/62974?article_type=t

Play Video

Citar este artigo
Zuo, L., Ding, J., Qi, Z. Single-Molecule Imaging of EWS-FLI1 Condensates Assembling on DNA. J. Vis. Exp. (175), e62974, doi:10.3791/62974 (2021).

View Video