Summary

比亚按蚊 幼虫唾液腺的解剖和免疫染色

Published: September 30, 2021
doi:

Summary

成年蚊子唾液腺(SG)是将所有蚊子传播的病原体(包括病毒和寄生虫)传播给人类宿主所必需的。该视频演示了从幼虫(L4)阶段冈 比亚按蚊 中有效分离SG以及L4 SGs的制备以进行进一步分析。

Abstract

蚊子唾液腺(SGs)是传播昆虫传播病原体的必要门户器官。致病因子,包括病毒和引起疟疾的疟原虫寄生虫,积聚在SG细胞的分泌腔中。在这里,它们准备在随后的血粉中传播给脊椎动物宿主。由于成虫腺体形成为幼虫SG导管芽残留物的形成,这些残余物持续存在于早期蛹SG组织分析之后,因此幼虫SG是限制疾病传播的干预措施的理想靶标。了解幼虫SG的发育有助于更好地了解其形态和功能适应性,并有助于评估针对该器官的新干预措施。该视频实验方案展示了一种有效的技术,用于从 冈比亚按蚊中 分离,固定和染色幼虫SG。在25%乙醇溶液中从幼虫中解剖的腺体固定在甲醇 – 冰醋酸混合物中,然后进行冷丙酮洗涤。在磷酸盐缓冲盐水(PBS)中冲洗几次后,可以用广泛的标记染料和/或抗血清对SG表达的蛋白质进行SG染色。这种用于幼虫SG分离的方法也可用于收集组织,用于 原位 杂交分析,其他转录组学应用和蛋白质组学研究。

Introduction

疟疾是一项重大公共卫生威胁,2019年造成近2.3亿人感染,估计有40.9万人死亡1。大多数死亡发生在撒哈拉以南非洲,是由寄生虫恶性疟原虫引起的,其昆虫载体是冈比亚按蚊,这是本视频演示的主题。尽管这些数字表明,自世纪之交以来,年死亡率大幅下降(年死亡人数减少了30万>),但从2000年到2015年观察到的疾病发病率的有希望的下降正在逐渐减少,这表明需要采取新的方法来限制疾病传播2。控制和可能消除疟疾的有希望的额外策略之一是使用基于CRISPR / Cas9的基因编辑和基因驱动3,4,5来靶向蚊子媒介的能力。事实上,以蚊媒为目标(通过扩大使用经杀虫剂处理的长效蚊帐)对减少疾病传播产生了最大的影响6

雌性蚊子在血粉期间从受感染的人类那里获得疟原虫配子体。在受精,成熟,中肠上皮穿越,种群扩张和专性蚊子宿主的血细胞导航之后,数百至数万个疟原虫孢子体侵入蚊子SG并填充组成分泌细胞的分泌腔。一旦进入分泌腔,寄生虫就可以直接进入唾液管,因此准备在下一次血粉时传播给新的脊椎动物宿主。由于SGs对于致疟疾孢子体传播给人类宿主至关重要,并且实验室研究表明SGs对于血液喂养,蚊子存活或繁殖力不是必需7,8,9,它们代表了阻断传播措施的理想目标。成虫SGs是幼虫SGs中”导管芽”残留物的形成,持续超过早期蛹SG组织分析10,使幼虫SG成为限制成虫期疾病传播的理想目标。

表征SG发育的幼虫阶段不仅有助于更好地了解其形态和功能适应性,还可以帮助评估通过关键SG调节因子的基因编辑靶向该器官的新干预措施。由于先前所有关于幼虫唾液腺结构的研究都早于免疫染色和现代成像技术10,11,我们已经开发出一种用各种抗体和细胞标志物分离和染色唾液腺的方案12。本视频演示了从冈比亚按蚊L4幼虫中提取,固定和染色幼虫SGs以进行共聚焦成像的方法。

Protocol

1. 准备解决方案和工具 解剖液的制备 为了制备解剖溶液,在15个塑料管中加入2.5mL的100%乙醇到7.5mL蒸馏H2O中。倒置管子3次混合。注意:该溶液可以在室温下储存数周。 制备10x磷酸盐缓冲盐水(PBS)储备 要制备10x PBS储备液,将17.8克Na2HPO4• 2H2O,2.4克KH2PO4,80克NaCl和2克KCl加入800毫升去离子水中。…

Representative Results

唾液腺相对容易从所有4期幼虫中解剖。雄性和雌性幼虫可以在L4幼虫晚期通过沿着雌性而不是雄性的背胸的红色条纹来区分(图2)。我们还观察到,雄性L4幼虫的触角形态比雌性L4幼虫更精细(图2),类似于在成年蚊子中观察到的这种结构的差异。随着L4阶段相当大的整体生长,唾液腺在L412期间也形成一个管腔。从早期L4期幼虫中分?…

Discussion

本文中描述的方案改编自果蝇SG解剖方案和成年蚊子解剖方案14、15、16。然而,当使用成人解剖和SG染色方法时,大多数标志物没有穿透基底膜(数据未显示)。成人方案的适应性包括在25%EtOH溶液中解剖腺体,用MeOH和冰醋酸的组合洗涤腺体,以及进行90s丙酮洗涤。在最初的成人方案中,在1xPBS14,15,16</sup…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢约翰霍普金斯疟疾研究所获取和饲养 冈比亚 锥虫幼虫。

Materials

 KH2PO4 Millipore Sigma P9791
 Na2HPO4 • 2H2O Millipore Sigma 71643
 NaCl Millipore Sigma S7653
Acetone Millipore Sigma 179124
Brush with soft bristles Amazon (SN NJDF) Detail Paint Brush Set B08LH63D89
Cover slips (22 x 50 mm) VWR 48393-195
DAPI (DNA) ThermoFisher Scientific D1306
Ethyl alcohol 200 proof Millipore Sigma EX0276
Gilson Pipetman P200 Pipette Gilson P200
Glacial Acetic Acid Sigma Aldrich 695092
Jewelers forceps, Dumont No. 5 Millipore Sigma F6521
KCl Millipore Sigma 58221
Methanol Millipore Sigma 1414209
Nail polish Amazon (Sally Hansen) B08148YH9M
Nile Red (lipid) ThermoFisher Scientific N1142
Paper towels/wipes ULINE S-7128
Petri plate (to make putty plate) ThermoFisher Scientific FB0875712
Pipette Tips Gilson Tips E200ST
Plastic Transfer Pipette Fisher Scientific S304671
Primary antibodies (e.g., Crb, Rab11) Developmental Studies Hybridoma Bank (DSHB); Andrew Lab Mouse anti-Crb (Cq4) or Rabbit anti-Rab11
Secondary antibodies with fluorescent tags (e.g., Alexa Fluor 488 Goat-anti Rabbit) ThermoFisher Scientific A11008
Silicone resin and curing agent for putty plate Dow Chemicals – Ximeter Silicone PMX-200
Slides, frosted on one end for labelling VWR  20 X 50 mm 48393-195
Wheat Germ Agglutinin ThermoFisher Scientific W834

Referências

  1. World malaria report 2020: 20 years of global progress and challenges. World Health Organization Available from: https://apps.who.int/iris/handle/10665/337660 (2020)
  2. Feachem, R. G. A., et al. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet. 394 (10203), 1056-1112 (2019).
  3. Adolfi, A., et al. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nature Communications. 11, 5553 (2020).
  4. Kyrou, K., et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology. 36 (11), 1062-1066 (2018).
  5. Rostami, M. N. CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infections. Parasite Immunology. 42 (9), 12762 (2020).
  6. Bhatt, S., et al. Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017. Elife. 4, 09672 (2015).
  7. Mellink, J. J., Vanden Bovenkamp, W. Functional aspects of mosquito salivation in blood feeding of Aedes aegypti. Mosquito News. 41 (1), 115 (1981).
  8. Ribeiro, J. M., Rossignol, P. A., Spielman, A. Role of mosquito saliva in blood vessel location. Journal of Experimental Biology. 108, 1-7 (1984).
  9. Yamamoto, D. S., Sumitani, M., Kasashima, K., Sezutsu, H., Matsuoka, H. Inhibition of malaria infection in transgenic Anopheline mosquitoes lacking salivary gland cells. PLoS Pathogens. 12 (9), 1005872 (2016).
  10. Rishikesh, N. Morphology and development of the salivary glands and their chromosomes in the larvae of Anopheles stephensi sensu stricto. Bulletin of the World Health Organization. 20 (1), 47-61 (1959).
  11. Jensen, D. V., Jones, J. C. The development of the salivary glands in Anopheles albimanus Wiedemann (Diptera, Culicidae). Annals of the Entomological Society of America. 50 (5), 40824 (1957).
  12. Chiu, M., Trigg, B., Taracena, M., Wells, M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. Insect Molecular Biology. 30 (2), 210-230 (2021).
  13. MR4. Methods in Anopheles research. Center for Disease Control Available from: https://www.beiresources.org/Portals/2/ (2015)
  14. Wells, M. B., Andrew, D. J. Salivary gland cellular architecture in the Asian malaria vector mosquito Anopheles stephensi. Parasites & Vectors. 8, 617 (2015).
  15. Wells, M. B., Villamor, J., Andrew, D. J. Salivary gland maturation and duct formation in the African malaria mosquito Anopheles gambiae. Scientific Reports. 7 (1), 601 (2017).
  16. Wells, M. B., Andrew, D. J. Anopheles salivary gland architecture shapes plasmodium sporozoite availability for transmission. mBio. 10 (4), 01238 (2019).
  17. Clements, A. N. . The physiology of mosquitoes. , (1963).
  18. Imms, A. D. On the larval and pupal stages of Anopheles maculipennis, meigen. Parasitology. 1 (2), 103-133 (1908).
  19. Favia, G., et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proceedings of the National Academy of Sciences of the United States of America. 104 (21), 9047-9051 (2007).
  20. Neira Oviedo, M., et al. The salivary transcriptome of Anopheles gambiae (Diptera: Culicidae) larvae: A microarray-based analysis. Insect Biochemistry and Molecular Biology. 39 (5-6), 382-394 (2009).
  21. Linser, P. J., Smith, K. E., Seron, T. J., Neira Oviedo, M. Carbonic anhydrases and anion transport in mosquito midgut pH regulation. Journal of Experimental Biology. 212 (11), 1662-1671 (2009).
  22. Linser, P. J., et al. Slc4-like anion transporters of the larval mosquito alimentary canal. Journal of Insect Physiology. 58 (4), 551-562 (2012).
check_url/pt/62989?article_type=t

Play Video

Citar este artigo
Chiu, M. Z., Lannon, S., Luchetti, M., Wells, M. B., Andrew, D. J. Dissection and Immunostaining of Larval Salivary Glands from Anopheles gambiae Mosquitoes. J. Vis. Exp. (175), e62989, doi:10.3791/62989 (2021).

View Video