Summary

适形可穿戴电极:从制造到电生理评估

Published: July 22, 2022
doi:

Summary

最近的两项技术 – 纹身和纺织品 – 已经在皮肤感应方面显示出有希望的结果。在这里,我们介绍了用于皮肤电生理传感的纹身和纺织电极的制造和评估方法。这些由导电聚合物制成的电子接口在舒适性和灵敏度方面优于现有标准。

Abstract

可穿戴电子设备正在成为监测身体信号的关键参与者,这些信号在身体活动跟踪过程中主要发生变化。考虑到物联网时代的兴起对远程医疗和个性化护理的兴趣日益浓厚,可穿戴传感器已将其应用领域扩展到医疗保健领域。为了确保临床相关数据的收集,这些设备需要与人体建立兼容的接口,以提供高信号质量的记录和长期操作。为此,本文提出了一种轻松制造适形薄纹身和软纺织品传感器的方法,用于在广泛的表面电生理记录中作为可穿戴有机电子设备应用。

这些传感器是通过经济高效且可扩展的皮肤电极图案化工艺开发的,使用聚(3,4-乙二氧基噻吩)-聚(苯乙烯磺酸盐)(PEDOT:PSS),生物电子学中最受欢迎的导电聚合物,在现成的可穿戴基板上。本文介绍了通过阻抗谱表征电极的关键步骤,以研究它们与皮肤耦合时在信号转导中的表现。需要比较研究来定位新型传感器的性能与临床黄金标准的关系。为了验证制造的传感器的性能,该协议展示了如何在实验室环境中通过用户友好的便携式电子设置从不同配置执行各种生物信号记录。该方法论文将允许多项实验计划,以推进用于人体健康监测的可穿戴传感器的当前技术水平。

Introduction

通过皮肤接触电极进行无创生物电势记录,提供有关人体在健身和医疗保健中的生理状态的大量数据1。新型可穿戴生物监测设备已经从电子学的最新技术进步发展到将集成控制和通信组件缩小到便携式尺寸。智能监测设备每天遍布市场,提供多种监测功能,最终目标是提供足够的生理内容以实现医疗诊断2。因此,与人体的安全、可靠和强大的接口在开发合法的医疗保健可穿戴技术方面提出了关键挑战。纹身和纺织电极最近作为可靠和稳定的接口出现,被认为是用于可穿戴生物传感的创新,舒适的设备345

纹身传感器是干燥和薄的界面,由于其厚度低(〜1μm),可确保无粘合剂,适形的皮肤接触。它们基于由分层结构组成的市售纹身纸套件,其允许在皮肤上释放超薄聚合物层6。分层结构还允许在传感器的制造过程中轻松处理薄聚合物层并将其转移到皮肤。最终电极是完全顺应的,佩戴者几乎无法察觉。纺织传感器是用电活性材料7从织物功能化中获得的电子设备。它们主要集成或简单地缝制在衣服上,以确保用户的舒适性,因为它们的柔软性,透气性以及与服装的明显亲和力。近十年来,纺织品和纹身电极已在表面电生理记录389中进行了评估,在耐磨性和信号质量记录中都显示出良好的结果,并在短期和长期评估中报告了高信噪比(SNR)。它们还被认为是可穿戴生化汗液分析110的潜在平台。

对纹身,纺织品以及一般而言,柔性薄膜技术(例如,由聚对二甲苯或不同弹性体等塑料箔制成的薄膜技术)的兴趣日益浓厚,这主要是通过与低成本和可扩展的制造方法的兼容性来促进的。丝网印刷、喷墨印刷、直接图案化、浸渍涂布、印章转移等已成功用于生产此类电子接口11。其中,喷墨打印是最先进的数字和快速原型制作技术。它主要应用于在环境条件下和各种基材上以非接触式添加剂方式对导电油墨进行图案化12.虽然已经通过贵金属油墨图案化13制造了多个可穿戴传感器,但金属薄膜在机械应力作用下会变脆并开裂。不同的研究小组采用了不同的策略来赋予金属与皮肤机械相容的特性。这些策略包括减少薄膜厚度和使用蛇纹石设计或褶皱和预拉伸基板141516。柔软且本质上具有柔韧性的导电材料,如导电聚合物,在柔性生物电子器件中得到了应用。它们的聚合物柔韧性与电导率和离子导电性相结合。PEDOT:PSS是生物电子学中最常用的导电聚合物。它的特点是柔软性,生物相容性,可持续性和印刷加工性17,这使其与生物医学设备的广泛生产相容。

设备,例如连接到采集系统的平面电极,允许在健康监测中记录生物电势。人体生物电势是由电原细胞产生的电信号,通过身体传播到皮肤表面。根据电极的放置位置,可以获取与大脑电活动(EEG),肌肉(EMG),心脏(ECG)和皮肤电导率(例如,生物阻抗或电活动,EDA)相关的数据。然后评估数据的质量,以评估电极在临床应用中的可用性。高SNR定义了它们的性能18,这通常与最先进的Ag / AgCl电极记录进行比较。虽然Ag/AgCl电极也具有高SNR,但它们缺乏长期可操作性和适时的耐磨性。高质量的生物信号记录提供了与特定器官功能相关的人类健康状况的见解。因此,舒适的纹身或纺织品界面的这些好处表明了它们对长期应用的前景,这些应用可以实现现实生活中的移动健康监测,并为远程医疗的发展铺平道路19

本文报告了如何在健康生物监测中制造和评估纹身和纺织电极。制造完成后,必须对新型电极进行表征。通常,采用电化学阻抗谱(EIS)来研究电极相对于目标界面(例如,皮肤)的传递函数的电性能。EIS用于比较多个电极的阻抗特性,并在不同条件下进行测试(例如,改变电极设计或研究长期响应)。本文展示了通过简单的设置记录表面生物信号,并报告了一种用户友好的方法来记录适用于任何需要验证皮肤生物电位记录的新型制造电极的不同类型的生物信号。

Protocol

注意:涉及人类受试者的实验不涉及收集与个人健康状况相关的可识别私人信息,此处仅用于技术演示。对三个不同受试者的数据进行了平均。电生理学记录是从先前发表的数据6,21中提取的。 1. 喷墨印刷PEDOT:PSS电极制造 注:以下方案已用于在商用柔性基材(纹身纸6和纺织品21?…

Representative Results

本文展示了通过喷墨打印制造舒适的皮肤接触电极以及表征它们并进行电生理学记录的方法。我们报告了PEDOT:PSS喷墨打印直接在不同基材上的制造步骤,例如织物(图1A),PEN(图1B)和纹身纸(图1C,D)以供参考。方案步骤1.2.1中提出的设计。和步骤 1.3.1.5。定义一个 1 cm2 的圆形感应区域,将电极与主要在?…

Discussion

本文描述了一种制造可穿戴电极的简单且可扩展的过程,并演示了一种记录电生理生物信号的方法。它使用了三个可穿戴基材的例子,如纹身,纺织品和薄膜。它介绍了如何在这些基板上构建传感器,并在应用之前表征其性能。为了制造电极,我们采用了PEDOT:PSS,这是一种导电聚合物,由于其与绿色加工的相容性具有成本效益,多功能加工性,生物相容性,柔软性和可持续性,因此从金属基导?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了法国国家研究机构通过ANR JCJC OrgTex项目(ANR-17-CE19-0010)的支持。它还获得了欧盟地平线2020研究和创新计划的资助,该计划根据第813863号的Marie Sklodowska-Curie赠款协议。E.I.要感谢普罗旺斯微电子中心的CMP洁净室工作人员在项目开发过程中的技术支持。

Materials

Biosignalplux – Plux wireless device for electrophysiological recordings PLUX Wireless Biosignals S.A EEG, ECG, EMG, EDA sensors
Covidien Kendal Disposable electrodes, medical grade disposable electrodes (Pregelled, 24 mm) Covidien / Kendal (formally Tyco) ARBO electrodes H124SG Commercial Ag/AgCl electrodes for electrophysiology
Dimatix inkjet printer Fujifilm DMP 2800 Inkjet printer
Laser Cutter Universal Laser Systems VLS 3.50, 50 W Laser cutter to cut the glue sheet for tattoo electrodes fabrication
NOVA Metrohm Autolab NOVA 2.1 Electrochemistry software to control Autolab instruments
OpenSignals 2020 PLUX wireless biosignals, S.A. Software suite for real-time biosignals visualisation, capable of direct interaction with PLUX devices
PEDOT:PSS inkjet printable ink Heraeus Deutschland GmbH & Co. KG CLEVIOS Pjet 700
Polyethylene naphthalene (PEN) foil  Goodfellow thickness 1.3 μm Used for tattoo electrodes interconnection fabrication
Polyimide tape 3M Kapton tape by 3 M, thickness 50 μm Used for tattoo electrodes interconnection fabrication
Potentiostat Metrohm Autolab Autolab potentiostat B.V. Used for EIS measurements
Silhouette temporary tattoo paper kit Silhouette Americ, Inc, US Substrate for tattoo-based electrodes
Wowen textile 100% cotton and commercially available pantyhose Substrate for textile-based electrodes

Referências

  1. Kim, J., et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sensors. 1 (8), 1011-1019 (2016).
  2. Ha, M., Lim, S., Ko, H. Wearable and flexible sensors for user-interactive health-monitoring devices. Journal of Materials Chemistry B. 6 (24), 4043-4064 (2018).
  3. Kim, D. H., et al. Epidermal electronics. Science. 333 (6044), 838-843 (2011).
  4. Takamatsu, S., et al. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Scientific Reports. 5, 1-7 (2015).
  5. Windmiller, J. R., et al. Electrochemical sensing based on printable temporary transfer tattoos. Chemical Communications. 48 (54), 6794-6796 (2012).
  6. Ferrari, L. M., Ismailov, U., Badier, J. M., Greco, F., Ismailova, E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. npj Flexible Electronics. 4 (1), 1-9 (2020).
  7. Heo, J. S., Eom, J., Kim, Y. H., Park, S. K. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small. 14 (3), 1-16 (2018).
  8. Nigusse, A. B., Mengistie, D. A., Malengier, B., Tseghai, G. B., Van Langenhove, L. Wearable smart textiles for long-term electrocardiography monitoring-a review. Sensors. 21 (12), 4174 (2021).
  9. Wang, Y., et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science Advances. 6 (43), (2020).
  10. Fan, W., et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science Advances. 6 (11), (2020).
  11. Tseghai, G. B., Mengistie, D. A., Malengier, B., Fante, K. A., Van Langenhove, L. PEDOT:PSS-based conductive textiles and their applications. Sensors. 20 (7), 1-18 (2020).
  12. Magliulo, M., et al. Printable and flexible electronics: From TFTs to bioelectronic devices. Journal of Materials Chemistry C. 3 (48), 12347-12363 (2015).
  13. Raut, N. C., Al-Shamery, K. Inkjet printing metals on flexible materials for plastic and paper electronics. Journal of Materials Chemistry C. 6 (7), 1618-1641 (2018).
  14. Kaltenbrunner, M., et al. An ultra-lightweight design for imperceptible plastic electronics. Nature. 499 (7459), 458-463 (2013).
  15. Kim, D. H., et al. Optimized structural designs for stretchable silicon integrated circuits. Small. 5 (24), 2841-2847 (2009).
  16. Yu, Y., Peng, S., Blanloeuil, P., Wu, S., Wang, C. H. Wearable temperature sensors with enhanced sensitivity by engineering microcrack morphology in PEDOT:PSS-PDMS sensors. ACS Applied Materials and Interfaces. 12 (32), 36578-36588 (2020).
  17. Martin, D. C., Malliaras, G. G. Interfacing electronic and ionic charge transport in bioelectronics. ChemElectroChem. 3 (5), 686-688 (2016).
  18. Inzelberg, L., Hanein, Y. Electrophysiology meets printed electronics: The beginning of a beautiful friendship. Frontiers in Neuroscience. 12, 992 (2019).
  19. Kim, J., Campbell, A. S., de Ávila, B. E. F., Wang, J. Wearable biosensors for healthcare monitoring. Nature Biotechnology. 37 (4), 389-406 (2019).
  20. Bihar, E., et al. Fully inkjet-printed, ultrathin and conformable organic photovoltaics as power source based on cross-linked PEDOT:PSS electrodes. Advanced Materials Technologies. 5 (8), 2000226 (2020).
  21. Bihar, E., et al. Fully printed all-polymer tattoo/textile electronics for electromyography. Flexible and Printed Electronics. 3 (3), 034004 (2018).
  22. Seekaew, Y., et al. Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection. Organic Electronics. 15 (11), 2971-2981 (2014).
  23. Ferrari, L. M., Keller, K., Burtscher, B., Greco, F. Temporary tattoo as unconventional substrate for conformable and transferable electronics on skin and beyond. Multifunctional Materials. 3 (3), 032003 (2020).
  24. Searle, A., Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiological Measurement. 21 (2), 271-283 (2000).
  25. Ferrari, L. M., et al. Ultraconformable temporary tattoo electrodes for electrophysiology. Advanced Science. 5 (3), 1700771 (2018).
  26. Teplan, M. Fundamental of EEG measurement. Measurement Science Review. 2 (2), 1-11 (2002).
  27. Pachori, R., Gupta, V., Firouzi, F., Chakrabarty, K., Nassif, S. Biomedical engineering fundamentals. Intelligent Internet of Things. From Device to Fog and Cloud. , 547-605 (2019).
  28. Caruelle, D., Gustafsson, A., Shams, P., Lervik-Olsen, L. The use of electrodermal activity (EDA) measurement to understand consumer emotions-A literature review and a call for action. Journal of Business Research. 104, 146-160 (2019).
  29. Huseynova, G., Hyun Kim, Y., Lee, J. H., Lee, J. Rising advancements in the application of PEDOT:PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. Journal of Information Display. 21 (2), 71-91 (2020).
  30. Bonnassieux, Y., et al. The 2021 flexible and printed electronics roadmap. Flexible and Printed Electronics. 6, 023001 (2022).
  31. Nawrocki, R. A. Super- and ultrathin organic field-effect transistors: from flexibility to super- and ultraflexibility. Advanced Functional Materials. 29 (51), 1-12 (2019).
  32. Kim, I., Shahariar, H., Ingram, W. F., Zhou, Y., Jur, J. S. Inkjet process for conductive patterning on textiles: Maintaining inherent stretchability and breathability in knit structures. Advanced Functional Materials. 29 (7), 1807573 (2019).
  33. Bihar, E., et al. Fully printed electrodes on stretchable textiles for long-term electrophysiology. Advanced Materials Technologies. 2 (4), 1600251 (2017).
  34. Ferrari, L. M., Ismailov, U., Greco, F., Ismailova, E. Capacitive coupling of conducting polymer tattoo electrodes with the skin. Advanced Materials Interfaces. 8 (15), 2100352 (2021).
  35. Inzelberg, L., Rand, D., Steinberg, S., David-Pur, M., Hanein, Y. A wearable high-resolution facial electromyography for long term recordings in freely behaving humans. Scientific Reports. 8 (1), 2058 (2018).
check_url/pt/63204?article_type=t

Play Video

Citar este artigo
Galliani, M., Ferrari, L. M., Ismailova, E. Conformable Wearable Electrodes: From Fabrication to Electrophysiological Assessment. J. Vis. Exp. (185), e63204, doi:10.3791/63204 (2022).

View Video