Summary

角膜上皮机械和化学损伤的离体体内动物模型

Published: April 06, 2022
doi:

Summary

在这里,开发了基于小鼠和兔的动物模型,用于角膜上皮的机械和化学损伤,以筛选新的治疗方法和潜在机制。

Abstract

眼表角膜损伤,包括化学烧伤和创伤,可能导致严重的瘢痕形成、眼睑、角膜角膜缘干细胞缺乏,并导致大的、持续的角膜上皮缺损。伴有以下角膜混浊和外周新生血管的上皮缺损会导致不可逆的视力损害,并阻碍未来的治疗,尤其是角膜移植术。由于动物模型可以作为有效的药物开发平台,因此本文开发了小鼠角膜损伤和兔角膜上皮碱烧伤模型。新西兰白兔用于碱烧模型。在肌内和局部麻醉下,可以将不同浓度的氢氧化钠施加到角膜的中心圆形区域30秒。在大量等渗生理盐水冲洗后,残留的松散角膜上皮被去除,角膜毛刺深入到该圆形区域内的Bowman层。通过在钴蓝光下荧光素染色记录伤口愈合。C57BL / 6小鼠用于小鼠角膜上皮的创伤模型。使用直径为2mm的皮肤冲头标记小鼠中央角膜,然后在体视显微镜下用0.5mm毛刺的角膜锈环去除器进行清创。这些模型可用于前瞻性地验证滴眼液或混合药物(如干细胞)的治疗效果,这些药物可能促进角膜上皮再生。通过使用体视显微镜和成像软件观察角膜混浊、外周新生血管形成和结膜充血,可以监测这些动物模型中的治疗效果。

Introduction

人类角膜由五个主要层组成,在眼部屈光中起着关键作用,以保持视力和结构完整性,以保护眼内组织1。角膜的最外层是角膜上皮,由五到六层细胞组成,这些细胞依次与基底细胞分化并向上移动以从眼表脱落1。与人类和新西兰兔的角膜相比,小鼠角膜具有相似的角膜结构,但由于上皮和基质2的厚度减少,其外围比中央部分薄。由于其在眼科系统中的独特位置,许多外部损伤如机械损伤、细菌接种和化学制剂等可能容易危及上皮完整性,进而导致威胁视力的上皮缺损、感染性角膜炎、角膜融化,甚至角膜穿孔。

尽管润滑剂、抗生素、抗炎剂、自体血清产品和羊膜等各种治疗剂已被用于改善再上皮形成和减少疤痕形成,但其他可以实现伤口愈合、减少炎症和抑制疤痕形成的潜在治疗方式仍在不同的平台上开发和测试。已经提出了用于角膜上皮伤口愈合的各种动物模型,包括糖尿病小鼠3使用角膜锈环去除器去除角膜上皮,通过无菌25 G针头对小鼠角膜上皮进行线性划痕以进行细菌接种4,环钻辅助通过角膜锈环去除器去除角膜上皮5,超过一半角膜和角膜缘的上皮烧灼6,环钻通过钝的手术刀刀片7擦伤兔角膜,以及通过液氮8快速冷冻对牛角膜损伤。

除了对角膜上皮的机械损伤外,化学制剂也是对眼表的常见侮辱,尤其是酸性和碱性物质。氢氧化钠(NaOH,0.1-1 N,持续30-60秒)是角膜化学烧伤910111213的小鼠和兔模型中常用的化学物质之一。在大鼠化学烧伤模型中,还将100%乙醇施用于角膜,然后使用手术刀片14进行额外的机械刮擦。由于维持健康的眼表依赖于功能单位,包括眼睑、睑板腺、泪系统、结膜和角膜,因此体内动物模型比离体培养的角膜上皮细胞或角膜组织具有一些优点。本文演示了角膜擦伤创面的小鼠模型和角膜碱烧伤的兔模型。

Protocol

动物研究中的所有实验程序均已获得长庚纪念医院研究伦理委员会的批准,并遵守ARVO关于将动物用于眼科和视觉研究的声明。 1.小鼠角膜上皮离 体 伤口愈合模型 小鼠的制备通过腹膜内递送盐酸氯胺酮(80-100mg / kg体重)和甲苯噻嗪(5-10mg / kg体重)对C57BL / 6小鼠进行全身麻醉。 通过确认小鼠对有害刺激的运动丧失和矫正反射的丧失,…

Representative Results

小鼠角膜上皮离体伤口愈合模型:使用手持式角膜锈环去除剂对小鼠角膜上皮进行体内清创后,在中央2mm区域可以发现具有阳性荧光素染色的轻度凹陷中央角膜区域(图3A-B)。收获小鼠眼球后,将其轻松固定在涂有蜡的48孔培养板上,无需显着旋转。按照该方案,可以在体视显微镜下的48孔培养板内每天检?…

Discussion

角膜损伤的小鼠和兔模型为监测伤口愈合、测试新疗法以及研究伤口愈合和治疗途径的潜在机制提供了一个有用的 离体体内 平台。根据研究目的,不同的动物模型可用于短期或长期实验。例如,在 体内小鼠角膜上产生上皮缺陷后,局限性上皮缺陷可用于监测少量液体治疗剂。同时,周围的功能单位,如眼睑、泪系统和结膜,可以在体内 条件下进行评估,而不是细?…

Declarações

The authors have nothing to disclose.

Acknowledgements

该研究由台湾原子能委员会(批准号A-IE-01-03-02-02),科学技术部(批准号NMRPG3E6202-3)和长庚医学研究项目(批准号CMRPG3H1281)资助。

Materials

6/0 Ethicon vicryl suture Ethicon 6/0VICRYL tarsorrhaphy
Barraquer lid speculum katena K1-5355 15 mm
Barraquer needle holder Katena K6-3310 without lock
Barron Vacuum Punch 8.0 mm katena K20-2108 for cutting filter paper
C57BL/6 mice National Laboratory Animal Center RMRC11005 mouse strain
Castroviejo forceps 0.12 mm katena K5-2500
Corneal rust ring remover with 0.5 mm burr Algerbrush IITM; Alger Equipment Co., Inc. Lago Vista, TX CHI-675 for debridement of the corneal epithelium
Filter paper Toyo Roshi Kaisha,Ltd. 1.11
Fluorescein sodum ophthalmic strips U.S.P OPTITECH OPTFL100 staining for corneal epithelial defect
Ketamine hydrochloride Sigma-Aldrich 61763-23-3 intraperitoneal or intramuscular anesthetics
New Zealand White Rabbits Livestock Research Institute, Council of Agriculture,Executive Yuan Rabbit models
Normal saline TAIWAN BIOTECH CO., LTD. 100-120-1101
Proparacaine Alcon ALC2UD09 topical anesthetics
Skin biopsy punch 2mm STIEFEL 22650
Sodium chloride (NaOH) Sigma-Aldrich 1310-73-2 a chemical agent for alkali burn
Stereomicroscope Carl Zeiss Meditec, Dublin, CA SV11 microscope for surgery
Westcott Tenotomy Scissors Medium katena K4-3004
Xylazine hydrochloride 23.32 mg/10 mL Elanco animal health Korea Co., LTD. 047-956 intraperitoneal or intramuscular anesthetics

Referências

  1. Sridhar, M. S. Anatomy of cornea and ocular surface. Indian Journal of Ophthalmology. 66 (2), 190-194 (2018).
  2. Henriksson, J. T., McDermott, A. M., Bergmanson, J. P. G. Dimensions and morphology of the cornea in three strains of mice. Investigative Ophthalmology & Visual Science. 50 (8), 3648-3654 (2009).
  3. Wang, X., et al. MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes. 69 (6), 1264-1278 (2020).
  4. Ma, X., et al. Corneal epithelial injury-induced norepinephrine promotes Pseudomonas aeruginosa keratitis. Experimental Eye Research. 195, 108048 (2020).
  5. Chan, M. F., Werb, Z. Animal models of corneal injury. Bio Protocol. 5 (13), 1516 (2015).
  6. Lan, Y., et al. Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology & Visual Science. 53 (7), 3638-3644 (2012).
  7. Watanabe, M., et al. Promotion of corneal epithelial wound healing in vitro and in vivo by annexin A5. Investigative Ophthalmology & Visual Science. 47 (5), 1862-1868 (2006).
  8. Murataeva, N., et al. Cannabinoid CB2R receptors are upregulated with corneal injury and regulate the course of corneal wound healing. Experimental Eye Research. 182, 74-84 (2019).
  9. Carter, K., et al. Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomaterialia. 99, 247-257 (2019).
  10. Sanie-Jahromi, F., et al. Propagation of limbal stem cells on polycaprolactone and polycaprolactone/gelatin fibrous scaffolds and transplantation in animal model. Bioimpacts. 10 (1), 45-54 (2020).
  11. Sun, M. M., et al. Epithelial membrane protein (EMP2) antibody blockade reduces corneal neovascularization in an In vivo model. Investigative Ophthalmology & Visual Science. 60 (1), 245-254 (2019).
  12. Yang, Y., et al. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal. 25 (2), 501-511 (2013).
  13. Bai, J. Q., Qin, H. F., Zhao, S. H. Research on mouse model of grade II corneal alkali burn. International Journal of Ophthalmology. 9 (4), 487-490 (2016).
  14. Oh, J. Y., et al. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proceedings of the National Academy of Sciences of the United States of America. 107 (39), 16875 (2010).
  15. Wang, T., et al. Evaluation of the effects of biohcly in an in vivo model of mechanical wounds in the rabbit cornea. Journal of Ocular Pharmacology and Therapeutics. 35 (3), 189-199 (2019).
  16. Gong, Y., et al. Effect of nintedanib thermos-sensitive hydrogel on neovascularization in alkali burn rat model. International Journal of Ophthalmology. 13 (6), 879-885 (2020).
  17. Yao, L., et al. Role of mesenchymal stem cells on cornea wound healing induced by alkali burn. PLoS One. 7 (2), 30842 (2012).
check_url/pt/63217?article_type=t

Play Video

Citar este artigo
Hung, K. H., Yeh, L. K. Ex Vivo and In Vivo Animal Models for Mechanical and Chemical Injuries of Corneal Epithelium. J. Vis. Exp. (182), e63217, doi:10.3791/63217 (2022).

View Video