Summary

从土壤样品中分离昆虫致病真菌的方法比较

Published: January 06, 2022
doi:

Summary

使用 Tenebrio 诱饵, Galleria 诱饵以及选择性人造培养基(富含氯霉素,噻苯达唑和环己酰亚胺(CTC培养基)的酵母提取物的马铃薯葡萄糖琼脂从热带土壤样品中分离出昆虫致病真菌菌落。

Abstract

本研究的目的是比较使用昆虫诱饵与人工选择性培养基从土壤样品中分离昆虫致病真菌(EPF)的有效性。土壤是微生物的丰富栖息地,包括EPF,特别是属于MetarhiziumBeauveria属,它们可以调节节肢动物害虫。市场上有基于真菌的生物制品,主要用于农业节肢动物害虫防治。然而,尽管地方性生物多样性很高,但全世界只有少数菌株用于商业生物制品。本研究在富含氯霉素、噻苯达唑和环己酰亚胺(CTC培养基)的酵母提取物的马铃薯葡萄糖琼脂上培养了524个土壤样品。观察真菌菌落的生长3周。所有MetarhiziumBeauveria EPF都在属水平上进行了形态学鉴定。此外,一些分离株在物种水平上被分子鉴定。在这524个土壤样本中,有24个也使用昆虫诱饵法(Mellonella和Tenebrio molitor)调查了EPF的发生率。从524个土壤样品中共分离出51个EPF菌株(41个Metarhizium spp.和10个Beauveria spp.)。所有真菌菌株都从农田或草原中分离出来。在选取比较的24个样本中,91.7%使用Glaeria诱饵的EPF阳性,62.5%使用Tenebrio诱饵,41.7%使用CTC。我们的结果表明,使用昆虫诱饵从土壤中分离出EPF比使用CTC培养基更有效。除了EPF的识别和保护之外,分离方法的比较还对生物多样性知识产生了积极影响。EPF收集的改进支持科学发展和技术创新。

Introduction

土壤是几种微生物的来源,包括昆虫致病真菌(EPF)。这种特殊的真菌群通过它们定殖并经常杀死节肢动物宿主的能力而得到认可,特别是昆虫1。经过分离、表征、杀伤性菌株的选择和注册后,EPF被大量生产用于节肢动物害虫控制,这支持了它们的经济相关性2。因此,分离EPF被认为是开发生物农药的第一步。 Beauveria spp.(Hypocreales:Cordycipitaceae)和 Metarhizium spp.(Hypocreales:Clavicipitaceae)是用于节肢动物害虫控制的最常见真菌3。EPF已成功从土壤,具有可见真菌病的节肢动物,定植植物和植物根际45中分离出来。

分离EPF也可用于研究该特定组的多样性,分布和生态学。最近的文献报道说,EPF的使用被低估了,引用了EPF的几个非常规应用,例如它们改善植物生长的能力4,从土壤中去除有毒污染物,以及用于医学6。本研究旨在比较使用昆虫诱饵从土壤中分离EPF与人工培养基的效率789。在EPF分离的背景下,使用 Galleria mellonella L.(鳞翅目:Phyralidae)作为昆虫诱饵已被广泛接受。这些幼虫被全世界科学界用作研究宿主 – 病原体相互作用的实验模型1011Tenebrio molitor L.(鞘翅目:Tenebrionidae)幼虫被认为是涉及毒力和分离EPF的研究的另一种昆虫模型,因为这种昆虫在实验室中很容易以低成本稀有712

与培养无关的方法,例如使用各种PCR技术,可用于检测和定量其基质上的EPF,包括土壤1314。然而,为了正确分离这些真菌菌落,应将其基质培养到选择性人工培养基9上,或者可以使用敏感昆虫15对样品中存在的真菌进行诱饵。一方面,CTC是一种不含多定的人造培养基,由富含酵母提取物的马铃薯葡萄糖琼脂组成,并辅以氯霉素,噻苯达唑和环己酰亚胺。这种培养基是由费尔南德斯等人开发的9 .以最大限度地从土壤中恢复天然存在的 Beauveria spp.和 Metarhizium spp.。另一方面, G. mellonella T. molitor 幼虫也可以成功地用作诱饵,以从土壤中获得EPF分离物。然而,根据Sharma等人15的说法,报告伴随使用和比较这两种诱饵昆虫的研究较少。葡萄牙葡萄园土壤对 Metarhizium robertsii(Metscn .)进行了显着恢复。索罗金使用 T。 G. mellonella 幼虫相比的molitor幼虫;相比之下, Beauveria bassiana (Bals. -Criv.)Vuill分离与使用 G. mellonella 诱饵15有关。因此,应根据研究目标和实验室基础设施来决定使用哪种EPF分离方法(即 ,G. mellonella-baitT. molitor-bait或CTC培养基)。本研究的目的是比较使用昆虫诱饵与人工选择性培养基从土壤样品中分离EPF的有效性。

Protocol

由于本研究涉及巴西遗传遗产,该研究在国家遗传遗产和相关传统知识管理系统(Sisgen)注册,代码为AA47CB6。 1. 土壤采样 使用小铲子将800克土壤(有或没有入射的次生植物根)收集到10厘米的深度。将它们在室温下储存在聚丙烯袋中,直到实验开始。注意:小根也可以收集,因为据报道EPF具有根际能力。样品的处理速度越快越好,因为随着时间的推移…

Representative Results

2015年至2018年间,巴西里约热内卢州共从草原收集了524个土壤样本:畜牧业(165个样本)、原生热带森林(90个样本)、湖畔(42个样本)和耕地/耕地(227个样本)。公积金阳性样本的地理坐标详情载于 补充表1。 在524个土壤样品中,仅使用CTC培养基分析了500个样品,并使用3种形式的分离(Galleria-bait, Tenebrio-bait和选择性CTC培养基)对24个样品进行了…

Discussion

自然和农业土壤生境是EPF22 的典型环境,也是一个极好的天然水库。在本研究中,讨论了使用昆虫诱饵与选择性培养基分离的两种EPF方法。分离的第一步是收集土壤样本。正确储存和鉴定土壤样品至关重要。关于纬度、经度、土壤类型和生物群落的信息对于涉及流行病学、建模和地理空间主题的研究至关重要2324.收集后,建议尽快处…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究部分由巴西的Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior(CAPES),财务代码001,Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Rio de Janeiro(FAPERJ)(项目编号E-26/010.001993/2015)和巴西国家电子和技术委员会(CNPq)资助。

Materials

Autoclave Phoenix Luferco 9451
Biosafety cabinet Airstream ESCO AC2-4E3
Chloramphenicol Sigma-Aldrich C0378
Climate chambers Eletrolab EL212/3
Coverslip RBR 3871
Cycloheximide Sigma-Aldrich C7698
Drigalski spatula Marienfeld 1800024
GPS app Geolocation app 2.1.2005
Lactophenol blue solution Sigma-Aldrich 61335
Microscope Zeiss Axio star plus 1169 149
Microscope camera Zeiss Axiocam 105 color 426555-0000-000
Microscope softwere Zen lite Zeiss 3.0
Microscope slide Olen k5-7105-1
Microtube BRAND Z336769-1PAK
Petri plates Kasvi K30-6015
Pipette tip Vatten VT-230-200C/VT-230-1000C
Pippette HTL – Labmatepro LMP 200 / LMP 1000
Plastic pots Prafesta descartáveis 8314
Polypropylene bags Extrusa 38034273/5561
Potato dextrose agar Kasvi K25-1022
Prism software 9.1.2 Graph Pad
Shovel Tramontina 77907009
Tenebrio mollitor Safari QP98DLZ36
Thiabendazole Sigma-Aldrich T8904
Tween 80 Vetec 60REAVET003662
Vortex Biomixer QL-901
Yeast extract Kasvi K25-1702

Referências

  1. Roberts, D. W., St. Leger, R. J. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology. 54, 1-70 (2004).
  2. do Nascimento Silva, J., et al. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica. Applied Microbiology and Biotechnology. 102 (6), 2595-2606 (2018).
  3. Faria, M. R., Wraight, S. P. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control. 43 (3), 237-256 (2007).
  4. Vega, F. V. The use of fungal entomopathogens as endophytes in biological control: a review. Applied Mycology. 110 (1), 4-30 (2018).
  5. Sharma, L., et al. Advances in entomopathogen isolation: A case of bacteria and fungi. Microorganisms. 9 (1), 1-28 (2021).
  6. Litwin, A., Nowak, M., Różalska, S. Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology. 19, 23-42 (2020).
  7. Kim, J. C., et al. Tenebrio molitor-mediated entomopathogenic fungal library construction for pest management. Journal of Asia-Pacific Entomology. 21 (1), 196-204 (2018).
  8. Meyling, N., Eilenberg, J. Ocurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agriculture, Ecosystems and Environment. 113 (1), 336-341 (2006).
  9. Fernandes, E. K. K., Keyser, C. A., Rangel, D. E. N., Foster, R. N., Roberts, D. W. CTC medium: A novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biological Control. 54 (3), 197-205 (2010).
  10. Ortiz-Urquiza, A., Keyhani, N. O. Molecular genetics of Beuveria bassiana infection of insects. Advantages in Genetics. 94, 165-249 (2016).
  11. Pereira, M. F., Rossi, C. C., Silva, G. C., Rosa, J. N., Bazzolli, M. S. Galleria mellonella as infection model: an in depth look at why it works and practical considerations for successful application. Pathogens and Disease. 78 (8), (2020).
  12. Souza, P. C., et al. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. Journal of Microbiological Methods. 118, 182-186 (2015).
  13. Canfora, L., et al. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil. Scientific Reports. 6, 22933 (2016).
  14. Garrido-Jurado, I., et al. Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Journal of Pest Science. 90, 319-330 (2016).
  15. Sharma, L., Oliveira, I., Torres, L., Marques, G. Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys. 38, 1-23 (2018).
  16. Riddell, R. W. Permanent stained mycological preparations obtained by slide culture. Mycologia. 42 (2), 265-270 (1950).
  17. Bischoff, J., Rehner, S. A., Humber, R. A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia. 101 (4), 512-530 (2009).
  18. Rehner, S. A., et al. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia. 103 (5), 1055-1073 (2011).
  19. Seifert, K. A., Gams, W., Seifert, K. A., Morgan-Jones, G., Gams, W., Kendrick, B. Anamorphs of Clavicipitaceae, Cordycipitaceae and Ophiocordycipitaceae. The Genera of Hyphomycetes. CBS Biodiversity Series. CBS-KNAW Fungal Biodiversity Centre. 9, 903-906 (2011).
  20. Humber, R. A., Lacey, L. A. Identification of entomopathogenic fungi. Manual of Techniques in Invertebrate Pathology., 2nd ed. , 151-187 (2012).
  21. Mesquita, E., et al. Efficacy of a native isolate of the entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semifield conditions. BioControl. 65 (3), 353-362 (2020).
  22. St Leger, R. J. Studies on adaptations of Metarhizium anisopliae to life in the soil. Journal of Invertebrate Pathology. 98 (3), 271-276 (2008).
  23. Mar, T. T., Suwannarach, N., Lumyong, S. Isolation of entomopathogenic fungi from Nortern Thailand and their production in cereal grains. World Journal of Microbiology and Biotechnology. 28 (12), 3281-3291 (2012).
  24. Rocha, L. F. N., Inglis, P. W., Humber, R. A., Kipnis, A., Luz, C. Occurrence of Metarhizium spp. in central Brazilian soils. Journal of Basic Microbiology. 53 (3), 251-259 (2013).
  25. Quesada-Moraga, E., Navas-Cortés, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A., Santiago-Álvarez, C. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research. 111 (8), 947-966 (2007).
  26. Mora, M. A. E., Rouws, J. R. C., Fraga, M. E. Occurrence of entomopathogenic fungi in atlantic forest soils. Microbiology Discovery. 4 (1), 1-7 (2016).
  27. Goble, T. A., Dames, J. F., Hill, M. P., Moore, S. D.The effects of farming system, habitat type and bait type on the isolation of entomopathogenic fungi from citrus soils in the Eastern Cape Province, South Africa. BioControl. 55 (3), 399-412 (2010).
  28. Medo, J., Cagáň, L. Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biological Control. 59 (2), 200-208 (2011).
  29. Chase, A. R., Osborne, L. S., Ferguson, V. M. Selective isolation of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae from an artificial potting medium. Florida Entomologist. 69, 285-292 (1986).
  30. Liu, Z. Y., Milner, R. J., McRae, C. F., Lutton, G. G. The use of dodine in selective media for the isolation of Metarhizium spp. from soil. Journal of Invertebrate Pathology. 62, 248-251 (1993).
  31. Rangel, D. E. N., Dettenmaier, S. J., Fernandes, E. K. K., Roberts, D. W. Susceptibility of Metarhizium spp. and other entomopathogenic fungi to dodine-based selective media. Biocontrol Science and Technology. 20 (4), 375-389 (2010).
  32. Keller, S., Kessler, P., Schweizer, C. Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl. 48 (3), 307-319 (2003).
  33. Enkerli, J., Widmer, F., Keller, S. Long-term field persistence of Beauveria brongniartii strains applied as biocontrol agents against European cockchafer larvae in Switzerland. Biological Control. 29 (1), 115-123 (2004).
  34. Imoulan, A., Alaoui, A., El Meziane, A. Natural occurrence of soil-borne entomopathogenic fungi in the Moroccan endemic forest of Argania spinosa and their pathogenicity to Ceratitis capitata. World Journal of Microbiology and Biotechnology. 27 (11), 2619-2628 (2011).
  35. Keyser, C. A., De Fine Licht, H. H., Steinwender, B. M., Meyling, N. V. Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiology. 15 (1), 1-11 (2015).
check_url/pt/63353?article_type=t

Play Video

Citar este artigo
Correa, T. A., Santos, F. S., Camargo, M. G., Quinelato, S., Bittencourt, V. R. E. P., Golo, P. S. Comparison of Methods for Isolating Entomopathogenic Fungi from Soil Samples. J. Vis. Exp. (179), e63353, doi:10.3791/63353 (2022).

View Video