Summary

快速高尔基染色用于海马体和前额叶皮层树突状脊柱可视化

Published: December 03, 2021
doi:

Summary

该协议描述了快速高尔基体方法的修改,该方法可以适应神经系统的任何部分,用于染色大鼠海马体和内侧前额叶皮层中的神经元。

Abstract

高尔基体浸渍,使用具有轻微适应的高尔基染色试剂盒,用于浸渍大鼠海马体和内侧前额叶皮层中的树突状棘。这种技术比以前的高尔基体浸渍方法有了显着的改进,因为预混合的化学物质使用起来更安全,神经元始终浸渍良好,背景碎片少得多,并且对于给定的区域,实验之间的脊柱密度存在极小的偏差。此外,大脑可以在某一点后积累并保持冷冻,直到进一步处理。使用这种方法可以研究任何感兴趣的大脑区域。一旦染色并覆盖滑动,树突状脊柱密度通过计算树突长度的棘数量来确定,并表示为每10μm树突的脊柱密度。

Introduction

使用重铬酸钾和硝酸银标记神经元的方法首先由Camillo Golgi12 描述,随后由Santiago Ramon y Cajal使用,以产生大量区分神经元和神经胶质亚型的工作。最近出版的一本附有他的插图的书现已出版3.在100多年前发表的Ramon y Cajal的研究之后,很少使用高尔基体浸渍。高尔基体浸渍是一个费力的过程,允许用光学显微镜对神经元进行三维可视化。多年来,高尔基体方法进行了多次修改,使方法更容易,染色更一致4。1984年,Gabbott和Somogyi5 描述了单段高尔基体浸渍程序,该程序允许更快速的加工。这种高尔基体浸渍方法需要用4%多聚甲醛和1.5%苦味酸灌注,固定后,然后振动切片到3%重铬酸钾浴中。切片安装在载玻片上,盖玻片的四个角粘合在一起,以便当浸入硝酸银中时,扩散是渐进的。然后将盖玻片弹出,部分脱水,并最终用安装介质永久滑落盖板。该技术被成功地用于标记海马体中的神经元和神经胶质细胞678 。这里描述的快速高尔基体方法是一种改进,因为重铬酸钾和硝酸银的暴露要少得多,并且不使用多聚甲醛和苦味酸。此外,尽管可以使用Gabbott和Somogyi5 方法的修饰来浸渍的细胞进行分析,但在脱水步骤中,切片通常过度或未充分暴露或从载玻片上掉落,并且通常必须合并几个实验以具有足够的细胞进行分析。

本方案描述了使用高尔基染色试剂盒(见 材料表)来标记大鼠海马体和内侧前额叶皮层(mPFC)中的树突和树突状棘。与以前的方法相比,这种方法的优点是它速度快,研究人员接触有毒化学物质较少,并且神经元染色一致。在许多研究中,下面描述的方案已被用于进行微小的修改,以评估大鼠海马体和mPFC中的树突状脊柱密度9101112131415

Protocol

所有实验程序均由圣心大学机构动物护理和使用委员会批准,并符合NIH动物护理和使用指南。 1. 脑组织的分离和浸润 使用前24小时高尔基体染色试剂盒的预混溶液A和B,并保存在深色瓶中和/或黑暗中。制作约80 mL溶液A和B混合物,足以在24小时后更换溶液。存放在密封瓶中。注意:不需要用盐水或多聚甲醛灌注。 在二氧化碳安乐死后通过断头台?…

Representative Results

使用快速高尔基体方法,细胞始终被很好地浸渍,以便有足够的细胞进行分析。与以前的方法相比,这是一个显着的改进,在以前的方法中,必须将实验合并以具有足够的数据进行分析。因此,可以一次处理更多的样品,并且可以冷冻储存大脑直到处理。 图3显示了海马体CA1区域中高尔基体浸渍细胞在低功率和高功率下的例子。对给定区域中的棘进行计数可以产生具有小标?…

Discussion

本方案描述了一种高尔基体浸渍方法,该方法允许快速同时处理许多切片。这是对前面描述的5 种劳动密集型方法的改进,并且始终产生浸渍神经元进行分析。此外,接触高尔基体浸渍中使用的有毒化学物质较少。该过程中最具挑战性的部分是使切片在幻灯片上保持平坦,这需要大量的练习。使用冷冻喷雾保持所有东西尽可能冷是至关重要的。

一旦载玻片干…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了圣心大学本科生研究计划Grants的支持。

Materials

Cardboard slides trays Fisher Scientific 12-587-10
Coverslips 24 x 60mm Fisher Scientific 12-545-M
FD Rapid GolgiStain kit FD Neurotechnologies PK 401 Stable at RT in the dark for months; Golgi staining kit
Freezing Spray Fisher Scientific 23-022524
HISTO-CLEAR Fisher Scientific 50-899-90147 clearing agent
NCSS Software Kaysville, UT, USA
Permount Fisher Scientific SP-15-100 mounting medium
Superfrost Plus Microscope slides Fisher Scientific 12-550-15
Tissue Tek CTYO OCT Compound Fisher Scientific 14-373-65 Used to mount brains on cryostat chuck

Referências

  1. Pannese, E. The Golgi Stain: invention, diffusion and impact on neurosciences. Journal of the History of the Neurosciences. 8 (2), 132-140 (1999).
  2. Bentivoglio, M., et al. The Original Histological Slides of Camillo Golgi and His Discoveries on Neuronal Structure. Frontiers in Neuroanatomy. 13, 3 (2019).
  3. Swanson, L. W., Newman, E., Araque, A., Dubinsky, J. M. . The Beautiful Brain: The Drawings of Santiago Ramon y Cajal. , 208 (2017).
  4. Dall’Oglio, A., Ferme, D., Brusco, J., Moreira, J. E., Rasia-Filho, A. A. The "single-section" Golgi method adapted for formalin-fixed human brain and light microscopy. Journal of Neuroscience Methods. 189 (1), 51-55 (2010).
  5. Gabbott, P. L., Somogyi, J. The ‘single’ section Golgi-impregnation procedure: methodological description. Journal of Neuroscience Methods. 11 (4), 221-230 (1984).
  6. Gould, E., Frankfurt, M., Westlind-Danielsson, A., McEwen, B. S. Developing forebrain astrocytes are sensitive to thyroid hormone. Glia. 3 (4), 283-292 (1990).
  7. Gould, E., Woolley, C. S., Frankfurt, M., McEwen, B. S. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. Journal of Neuroscience. 10 (4), 1286-1291 (1990).
  8. Woolley, C. S., Gould, E., Frankfurt, M., McEwen, B. S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. Journal of Neuroscience. 10 (12), 4035-4039 (1990).
  9. Frankfurt, M., Salas-Ramirez, K., Friedman, E., Luine, V. Cocaine alters dendritic spine density in cortical and subcortical brain regions of the postpartum and virgin female rat. Synapse. 65 (9), 955-961 (2011).
  10. Frankfurt, M., Luine, V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Hormones Behavior. 74, 28-36 (2015).
  11. Bowman, R. E., Luine, V., Khandaker, H., Villafane, J. J., Frankfurt, M. Adolescent bisphenol-A exposure decreases dendritic spine density: role of sex and age. Synapse. 68 (11), 498-507 (2014).
  12. Bowman, R. E., et al. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats. Hormones Behavior. 69, 89-97 (2015).
  13. Eilam-Stock, T., Serrano, P., Frankfurt, M., Luine, V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behavioral Neuroscience. 126 (1), 175-185 (2012).
  14. Inagaki, T., Frankfurt, M., Luine, V. Estrogen-induced memory enhancements are blocked by acute bisphenol A in adult female rats: role of dendritic spines. Endocrinology. 153 (7), 3357-3367 (2012).
  15. Jacome, L. F., et al. Gonadal Hormones Rapidly Enhance Spatial Memory and Increase Hippocampal Spine Density in Male Rats. Endocrinology. 157 (4), 1357-1362 (2016).
  16. Frankfurt, M. Bisphenol-A: a plastic manufacturing compound disrupts critical brain structures and impairs memory. Research Features. , (2021).
  17. Wallace, M., Luine, V., Arellanos, A., Frankfurt, M. Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Research. 1126 (1), 176-182 (2006).
  18. Wallace, M., Frankfurt, M., Arellanos, A., Inagaki, T., Luine, V. Impaired recognition memory and decreased prefrontal cortex spine density in aged female rats. Annals of the New York Academy of Science. 1097, 54-57 (2007).
  19. Bowman, R. E., Hagedorn, J., Madden, E., Frankfurt, M. Effects of adolescent Bisphenol-A exposure on memory and spine density in ovariectomized female rats: Adolescence vs adulthood. Hormones Behavior. 107, 26-34 (2019).
  20. Novaes, L. S., Dos Santos, N. B., Perfetto, J. G., Goosens, K. A. Environmental enrichment prevents acute restraint stress-induced anxiety-related behavior but not changes in basolateral amygdala spine density. Psychoneuroendocrinology. 98, 6-10 (2018).
  21. Trzesniewski, J., Altmann, S., Jäger, L., Kapfhammer, J. P. Reduced Purkinje cell size is compatible with near normal morphology and function of the cerebellar cortex in a mouse model of spinocerebellar ataxia. Experimental Neurology. 311, 205-212 (2019).
  22. Zemmar, A., et al. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex. Cerebral Cortex. 28 (6), 2109-2117 (2018).
check_url/pt/63404?article_type=t

Play Video

Citar este artigo
Frankfurt, M., Bowman, R. Rapid Golgi Stain for Dendritic Spine Visualization in Hippocampus and Prefrontal Cortex. J. Vis. Exp. (178), e63404, doi:10.3791/63404 (2021).

View Video