Summary

Un método robusto para la producción a gran escala de esferoides para aplicaciones de detección y análisis de alto contenido

Published: December 28, 2021
doi:

Summary

Este protocolo detalla un método para la producción de tres tipos diferentes de esferoides de una manera que los hace adecuados para la detección y el análisis de alto contenido a gran escala. Además, se presentan ejemplos que muestran cómo se pueden analizar a nivel de células esferoides e individuales.

Abstract

El cribado de alto contenido (HCS) y el análisis de alto contenido (HCA) son tecnologías que proporcionan a los investigadores la capacidad de extraer mediciones fenotípicas cuantitativas a gran escala de las células. Este enfoque ha demostrado ser poderoso para profundizar nuestra comprensión de una amplia gama de eventos fundamentales y aplicados en biología celular. Hasta la fecha, la mayoría de las aplicaciones de esta tecnología se han basado en el uso de células cultivadas en monocapas, aunque cada vez se da más cuenta de que tales modelos no recapitulan muchas de las interacciones y procesos que ocurren en los tejidos. Como tal, ha habido una aparición en el desarrollo y uso de ensamblajes celulares de 3 dimensiones (3D), como esferoides y organoides. Aunque estos modelos 3D son particularmente poderosos en el contexto de la biología del cáncer y los estudios de administración de fármacos, su producción y análisis de una manera reproducible adecuada para HCS y HCA presentan una serie de desafíos. El protocolo detallado aquí describe un método para la generación de esferoides tumorales multicelulares (MCTS), y demuestra que se puede aplicar a tres líneas celulares diferentes de una manera que es compatible con HCS y HCA. El método facilita la producción de varios cientos de esferoides por pozo, proporcionando la ventaja específica de que cuando se utiliza en un régimen de cribado, se pueden obtener datos de varios cientos de estructuras por pozo, todas tratadas de manera idéntica. También se proporcionan ejemplos, que detallan cómo procesar los esferoides para imágenes de fluorescencia de alta resolución y cómo HCA puede extraer características cuantitativas tanto a nivel de esferoides como de células individuales dentro de cada esferoide. Este protocolo podría aplicarse fácilmente para responder a una amplia gama de preguntas importantes en biología celular.

Introduction

Tradicionalmente, los ensayos basados en células se han realizado en monocapas que crecen sobre un sustrato sólido, que efectivamente puede considerarse como un entorno bidimensional (2D). Sin embargo, cada vez se reconoce más que los modelos de cultivo celular 2D carecen de relevancia fisiológica en algunos contextos y no pueden replicar muchas de las complejas interacciones que ocurren entre las células1. Los métodos de cultivo celular tridimensional (3D) se están volviendo rápidamente populares entre los investigadores, y los modelos de células 3D muestran un alto potencial para imitar mejor las condiciones fisiológicas encontradas por las células en el entorno tisular2. Hay varios tipos diferentes de ensamblajes de células 3D que se han empleado, pero los dos tipos más comunes son los esferoides y los organoides. Los esferoides se pueden cultivar a partir de muchas líneas celulares diferentes, y pueden adoptar varias formas y tamaños dependiendo del tipo de célula utilizada y su método de ensamblaje3. Además, los esferoides también pueden denominarse esferoides tumorales multicelulares (MCTS) cuando se cultivan a partir de líneas celulares de cáncer, y estos modelos han encontrado un uso particular para la administración preclínica de fármacos in vitro y estudios de toxicidad4,5. Los organoides, por otro lado, tienen como objetivo imitar mejor los tejidos y órganos de nuestro cuerpo y pueden adoptar disposiciones morfológicas más complejas. La producción de organoides implica el uso de células madre adultas o células madre pluripotentes, que pueden reprogramarse en las células apropiadas para parecerse al tejido u órgano de interés. Se utilizan principalmente para investigar el desarrollo de órganos y para modelar enfermedades e interacciones huésped-patógeno6.

Hay una gama de diferentes métodos utilizados para generar ensamblajes de células 3D. Los métodos basados en andamios proporcionan un sustrato o soporte al que las células pueden unirse o crecer dentro. Estos andamios pueden tener varias formas y pueden estar hechos de una variedad de materiales diferentes. Los más comunes son los componentes de la matriz extracelular (ECM) y los hidrogeles, y están diseñados para parecerse al entorno extracelular natural de las células y, por lo tanto, facilitar las interacciones fisiológicas4,7. El material del basamento de ECM se ha extraído del tumor de sarcoma de ratón Engelbreth-Holm-Swarm y se ha demostrado que contiene una rica mezcla de componentes de ECM, incluida la laminina, colágeno tipo IV y perlecan8. Sin embargo, a pesar de su ventajosa composición, su uso plantea dos retos principales, a saber, su variabilidad de lote a lote y que tiene dos estados agregados diferentes por debajo y por encima de 10 °C8,9. Por el contrario, los hidrogeles tienen la ventaja de ser flexibles con respecto a sus componentes y rigidez, y se pueden personalizar para adaptarse al conjunto específico de celdas 3D deseado7,10. Los métodos basados en andamios son esenciales para el crecimiento de organoides, pero también se usan ampliamente para los esferoides. Los métodos sin andamios, que funcionan evitando que las células se adhieran a la superficie en la que están creciendo, generalmente solo son compatibles con el ensamblaje de esferoides. Los ejemplos incluyen placas de fijación ultra baja (ULA), con fondo plano o fondo en U, que permiten la agregación de las células en esferoides, o el uso de agitación continua de las células en matraces giratorios / de rotación10.

El uso de ensamblajes de células 3D para estudiar una amplia variedad de eventos biológicos está ganando popularidad rápidamente; sin embargo, es esencial que el método elegido para su cultivo sea adecuado y compatible con los planes para su análisis posterior. Por ejemplo, el uso de placas ULA genera esferoides de alta consistencia; sin embargo, este método está restringido a la producción de un solo esferoide por pozo, lo que limita el rendimiento. Se necesita una consideración particular cuando se planifica la obtención de imágenes de fluorescencia de la estructura 3D. El sustrato o placa sobre la que se cultiva el conjunto debe ser ópticamente compatible, y se debe tener cuidado de minimizar los efectos de dispersión de la luz causados por cualquier andamio que se haya podido utilizar11. Este problema en particular se agudiza a medida que aumenta la apertura numérica de las lentes del objetivo del microscopio.

Podría decirse que una de las principales razones para seleccionar trabajar con un modelo de célula 3D es extraer datos de imágenes volumétricas no solo sobre todo el conjunto sino también sobre las células individuales dentro de él. Los modelos MCTS, en particular, están comenzando a ser muy poderosos para profundizar nuestra comprensión de cómo las terapias transitan desde el exterior a las células centrales (como lo necesitarían en un tumor)12, por lo que es esencial obtener conocimiento de células individuales en diferentes capas. La tecnología de imagen que extrae información cuantitativa de células individuales se denomina análisis de alto contenido (HCA) y es un enfoque poderoso en el contexto del cribado13. Hasta la fecha, el HCA se ha aplicado casi exclusivamente a cultivos monocapa, pero cada vez hay más conciencia de que este enfoque tiene el poder de aplicarse a cultivos 3D que permiten estudiar una amplia gama de funciones y procesos celulares14. Tendría la clara ventaja de que se podría analizar un gran número de ensamblajes 3D, lo que podría proporcionar datos a nivel de celda de cada estructura. Sin embargo, los desafíos asociados con la obtención de imágenes de ensamblajes de células potencialmente gruesas, así como los grandes conjuntos de datos generados, deben superarse.

En este artículo, se presenta un método robusto basado en andamios para la producción a gran escala de MCTS en un formato de 96 pocillos. El método facilita la producción de varios cientos de ensamblajes de células 3D en cada pozo. Se muestran ejemplos para tres tipos de células diferentes, que representan modelos de tumores sólidos del hígado, pulmón y colon. Los esferoides que se forman pueden ser de una variedad de tamaños, por lo que HCA se utiliza para seleccionar estructuras de un tamaño y / o morfología particular. Esta característica proporciona la ventaja adicional de que cualquier fenotipo observado se puede comparar entre esferoides de diferentes tamaños, pero todos tratados de la misma manera en el mismo pozo. Este enfoque es compatible con imágenes de alta resolución, proporcionando datos cuantitativos a nivel celular y subcelular de los mismos ensamblajes celulares. Este método de producción de esferoides tiene la ventaja adicional sobre los métodos que generan un solo esferoide por pozo, que el gran número de esferoides producidos en cada pozo potencialmente proporciona suficiente biomasa para otros análisis aguas abajo, como el perfil de transcriptoma y proteoma.

Protocol

1. Cultivo celular Preparar medios Preparar medios de cultivo celular específicos dependiendo del tipo de línea celular. Asegúrese de que todos los medios para el mantenimiento celular contengan un 10% de suero bovino fetal (FBS).NOTA: Diferentes líneas celulares utilizan diferentes medios. Las células de carcinoma de colon HT-29 (ATCC HTB-38) se cultivan en McCoys 5A + 10% FBS. Las células de carcinoma hepatocelular HepG2 (ATCC HB-8065) se cultivan en Medio Esencial Mínimo +…

Representative Results

En este protocolo, se detalla un método robusto para producir ensamblajes de cultivo celular 3D en forma de esferoides, utilizando diferentes tipos de células para representar varios tejidos tumorales. Este método permite la generación de cientos de esferoides por pozo, lo que permite realizar ensayos basados en células de manera de alto contenido (Figura 1). Este enfoque se ha utilizado previamente para estudiar la absorción de nanopartículas en los esferoides HT-29…

Discussion

El enfoque descrito aquí detalla una plataforma para generar varios cientos de esferoides por pozo de una manera que sea adecuada para HCS y HCA. En comparación con otros métodos populares, como el uso de placas ULA de fondo plano y fondo redondo, que permiten la formación de un solo esferoide por pozo18,19, este método brinda la oportunidad de extraer información de alta resolución de un gran número de esferoides en un formato de detección. Cabe destaca…

Declarações

The authors have nothing to disclose.

Acknowledgements

Los autores reconocen el apoyo de una subvención de investigación en infraestructura de Science Foundation Ireland (SFI) (16/RI/3745) a JCS. El trabajo en el Laboratorio de Detección celular de UCD cuenta con el apoyo de la Facultad de Ciencias de UCD. ASC está financiado por una beca de posgrado del Gobierno de Irlanda del Consejo Irlandés de Investigación (IRC) (GOIPG/2019/68). Los autores también agradecen a todos los miembros del laboratorio por sus aportes y discusiones útiles. La obra de arte de la Figura 1 se generó en BioRender.

Materials

0.05% Trypsin-EDTA (1x), phenol red Gibco 25300054
Bovine Serum Albumin (BSA) Sigma Aldrich A6003
Calcium chloride Fisher Scientific 10050070
CellCarrier-96 Ultra Microplates, tissue culture treated, black, 96-well with lid Perkin Elmer 6055302 These plates have been renamed as Phenoplates
Dimethyl sulfoxide (DMSO) Sigma Aldrich D2650
Foetal Bovine Serum (FBS), qualified, EU approved, South America origin, heat inactivated Gibco 10500064
Glycine Fisher Scientific BP381-1
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A-11029
L-Glutamine solution, 200 mM Gibco 25030024
Hoechst 33342 Sigma Aldrich 14533
Magnesium chloride Fisher Scientific 10647032
Matrigel Basement Membrane Matrix, Phenol Red-free, LDEV-free, 10 mL Corning 356237 This Matrigel formulation can be also found with the same catalogue number at BD Biosciences
Matrigel Growth Factor Reduced Matrigel BD Biosciences 356231 This Matrigel formulation can be also found with the same catalogue number at Corning
McCoy's 5A medium Gibco 26600023
McCoy's 5A medium with L glutamine and sodium bicarbonate, without phenol red Hyclone 10358633
Minimum Essential Medium (MEM) Gibco 21090022
Minimum Essential Medium (MEM), without glutamine, without phenol red Gibco 51200046
Mouse monoclonal anti-LAMP1 antibody (concentrate) Developmental Studies Hybridoma Bank H4A3-a
Neubauer counting chamber Hirschmann 8100203
Nunclon tissue culture dish with lid, polystyrene, 92 mm x 17 mm ThermoFisher Scientific 150350
Opera Phenix HCS System and Harmony HCA software Perkin Elmer HCSHH14000000
Paraformaldehyde (PFA) Sigma Aldrich P6148
Phalloidin Alexa Fluor 568 Invitrogen A12380
Phosphate Buffered Saline (PBS) tablets Sigma Aldrich P4417
Polysorbate 20 Sigma Aldrich P5927
RPMI 1640 Medium, GlutaMAX Supplement Gibco 61870010
RPMI 1640 Medium, without glutamine, without phenol red Gibco 11835063
Triton X-100 Sigma Aldrich T9284
Stericup sterile vacuum filter units Millipore SCGVU05RE

Referências

  1. Jensen, C., Teng, Y. Is it time to start transitioning from 2D to 3D cell culture. Frontiers in Molecular Biosciences. 7, 33 (2020).
  2. Langhans, S. A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology. 9, 6 (2018).
  3. Edmondson, R., Broglie, J. J., Adcock, A. F., Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies. 12 (4), 207-218 (2014).
  4. Lv, D., Hu, Z., Lu, L., Lu, H., Xu, X. Three-dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncology Letters. 14 (6), 6999-7010 (2017).
  5. Zhang, X., Jiang, T., Chen, D., Wang, Q., Zhang, L. W. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Critical Reviews in Toxicology. 50 (4), 279-309 (2020).
  6. Dutta, D., Heo, I., Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends in Molecular Medicine. 23 (5), 393-410 (2017).
  7. Nunes, A. S., Barros, A. S., Costa, E. C., Moreira, A. F., Correia, I. J. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnology and Bioengineering. 116 (1), 206-226 (2019).
  8. Kleinman, H. K., Martin, G. R. Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology. 15, 378-386 (2005).
  9. Caliari, S. R., Burdick, J. A. A practical guide to hydrogels for cell culture. Nature Methods. 13 (5), 405-414 (2016).
  10. Foglietta, F., Canaparo, R., Muccioli, G., Terreno, E., Serpe, L. Methodological aspects and pharmacological applications of three-dimensional cancer cell cultures and organoids. Life Sciences. 254, 117784 (2020).
  11. Bardsley, K., Deegan, A. J., El Haj, A., Yang, Y. Current state-of-the-art 3D tissue models and their compatibility with live-cell imaging. Advances in Experimental Medicine and Biology. 1035, 3-18 (2017).
  12. Darrigues, E., et al. Tracking gold nanorods’ interaction with large 3D pancreatic-stromal tumor spheroids by multimodal imaging: Fluorescence, photoacoustic, and photothermal microscopies. Scientific Reports. 10 (1), 3362 (2020).
  13. Boutros, M., Heigwer, F., Laufer, C. Microscopy-based high-content screening. Cell. 163 (6), 1314-1325 (2015).
  14. Mysior, M. M., Simpson, J. C. Cell3: A new vision for study of the endomembrane system in mammalian cells. Bioscience Reports. , (2021).
  15. Nürnberg, E., et al. Routine optical clearing of 3D-cell cultures: Simplicity forward. Frontiers in Molecular Biosciences. 7 (20), (2020).
  16. Cutrona, M. B., Simpson, J. C. A High-throughput automated confocal microscopy platform for quantitative phenotyping of nanoparticle uptake and transport in spheroids. Small. 15 (37), 1902033 (2019).
  17. Kelly, S., Byrne, M. H., Quinn, S. J., Simpson, J. C. Multiparametric nanoparticle-induced toxicity readouts with single cell resolution in HepG2 multicellular tumour spheroids. Nanoscale. 13 (41), 17615-17628 (2021).
  18. Sirenko, O., Mitlo, T., Hesley, J., Luke, S., Owens, W., Cromwell, E. F. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay and Drug Development Technologies. 13 (7), 402-414 (2015).
  19. Redondo-Castro, E., Cunningham, C. J., Miller, J., Cain, S. A., Allan, S. M., Pinteaux, E. Generation of human mesenchymal stem cell 3D spheroids using low-binding plates. Bio-protocol. 8 (16), (2018).
  20. Lee, G. Y., Kenny, P. A., Lee, E. H., Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods. 4 (4), 359-365 (2007).
  21. Eismann, B., et al. Automated 3D light-sheet screening with high spatiotemporal resolution reveals mitotic phenotypes. Journal of Cell Science. 133 (11), 245043 (2020).
  22. Alsehli, H., et al. An integrated pipeline for high-throughput screening and profiling of spheroids using simple live image analysis of frame to frame variations. Methods. 190, 33-43 (2021).
  23. Stirling, D. R., et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics. 22 (1), 1-11 (2021).
  24. Renner, H., et al. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife. 9, 52904 (2020).
  25. Powley, I. R., et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. British Journal of Cancer. 122 (6), 735-744 (2020).
  26. Collins, A., Miles, G. J., Wood, J., MacFarlane, M., Pritchard, C., Moss, E. Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant preclinical models in endometrial cancer. Gynecologic Oncology. 156 (1), 251-259 (2020).
  27. Miles, G. J., et al. Evaluating and comparing immunostaining and computational methods for spatial profiling of drug response in patient-derived explants. Laboratory Investigation. 101 (3), 396-407 (2021).
check_url/pt/63436?article_type=t

Play Video

Citar este artigo
Chalkley, A. S., Mysior, M. M., Simpson, J. C. A Robust Method for the Large-Scale Production of Spheroids for High-Content Screening and Analysis Applications. J. Vis. Exp. (178), e63436, doi:10.3791/63436 (2021).

View Video