Summary

从微解剖小鼠脉络丛中分离和表征免疫细胞

Published: February 03, 2022
doi:

Summary

本研究使用流式细胞术和两种不同的门控策略对分离的灌注小鼠脑脉络丛;该协议确定了填充该大脑结构的主要免疫细胞亚群。

Abstract

大脑不再被视为孤立运作的器官;越来越多的证据表明,外周免疫系统的变化可以间接塑造大脑功能。在大脑和体循环之间的界面,构成血脑脊液屏障的脉络丛(CP)被强调为脑外交流的关键部位。脑脊髓质酸产生脑脊液、神经营养因子和信号分子,这些分子可以塑造大脑稳态。CP也是一个活跃的免疫学利基。与在生理条件下主要由小胶质细胞填充的脑实质相反,CP免疫细胞的异质性概括了在其他外周器官中发现的多样性。脑瘫免疫细胞的多样性和活性随衰老、应激和疾病而变化,调节脑瘫上皮的活性,从而间接塑造大脑功能。该协议的目标是分离小鼠CP并确定填充它们的主要免疫亚群的约90%。该方法是表征CP免疫细胞并了解它们在协调外围到大脑通信中的功能的工具。拟议的方案可能有助于破译CP免疫细胞如何在健康和各种疾病条件下间接调节大脑功能。

Introduction

自从保罗·埃尔利希(Paul Erhlich)在19世纪末 发现血脑屏障以来,大脑一直被认为与其他器官和血液几乎分离。然而,在过去的十年中,出现了大脑功能由各种生物因素塑造的概念,例如肠道微生物群和全身免疫细胞和信号1234。与此同时,其他脑边界,如脑膜和脉络丛(CP)已被确定为活动免疫 – 脑串扰的界面,而不是惰性屏障组织5678

脑瘫构成血脑脊液屏障,是分隔大脑和外围的边界之一。它们位于大脑的四个心室中,即第三个、第四个和两个侧心室,并且与参与神经发生的区域(例如海马体的脑室下区和粒下区)相邻3。在结构上,CP由由单层上皮细胞包围的开窗状毛细血管网络组成,这些细胞通过紧密和粘附连接相互连接910。脑瘫上皮的主要生理作用涉及脑脊液的产生,脑脊液从废物代谢物和蛋白质聚集体中冲洗大脑,以及产生和控制各种信号分子的血脑通道,包括激素和神经营养因子111213。来自CP的分泌分子通过调节神经发生和小胶质细胞功能来塑造大脑的活动141516171819,这使得CP对大脑稳态至关重要。CP还从事各种免疫活动;虽然在非病理条件下脑实质中的主要免疫细胞类型是小胶质细胞,但CP免疫细胞群的多样性与外周器官一样广泛37,这表明免疫调节和信号传导的各种通道在CP中起作用。

内皮细胞和上皮细胞之间的空间,CP基质,主要由边界相关巨噬细胞(BAM)填充,其表达促炎细胞因子和与抗原呈递相关的分子,以响应炎症信号3。巨噬细胞的另一种亚型,Kolmer’s epiplexus细胞,存在于CP上皮的顶端表面20。CP基质也是树突状细胞,B细胞,肥大细胞,嗜碱性粒细胞,嗜中性粒细胞,先天淋巴细胞和T细胞的利基,这些细胞主要是能够识别中枢神经系统抗原的效应记忆T细胞72122,2324。此外,CP处免疫细胞群的组成和活性会随着全身或脑部的扰动而变化,例如在衰老过程中1014152125,微生物群扰动7stress26和疾病2728。值得注意的是,这些变化被认为间接塑造了大脑功能,即CP CD4 + T细胞向Th2炎症的转变发生在大脑衰老中,并触发CP的免疫信号传导,可能塑造衰老相关的认知能力下降1415212529.因此,阐明CP免疫细胞的特性对于更好地了解它们对CP上皮生理和分泌的调节功能至关重要,从而破译它们在健康和疾病条件下对大脑功能的间接影响。

脑瘫是仅包含少数免疫细胞的小结构。它们的隔离需要在灌注的初步步骤后进行显微解剖;否则,血液中的免疫细胞将构成主要污染物。该协议旨在使用流式细胞术表征CP的髓细胞和T细胞亚群。该方法鉴定了在非炎性条件下构成小鼠CP的约90%的免疫细胞群,根据最近发表的使用其他方法解剖免疫CP异质性的工作71028。该方案可用于表征CP免疫细胞区室中疾病的变化以及 体内其他实验范式。

Protocol

所有程序均符合欧盟委员会关于处理实验动物的指南,指令86/609/EEC。它们由第59号伦理委员会批准,由CETEA / CEEA第089号批准,编号为dap210067和APAFIS #32382-2021070917055505 v1。 1. 材料的准备 将所有抗体(材料表)储存在4°C,避免光照。 DAPI储备溶液(1mg / mL):将粉末重悬于PBS-/- (材料表),等分试样,并储存在-20°C。…

Representative Results

这里介绍的流式细胞术分析以高度可重复的方式成功地揭示了髓细胞和T细胞的主要亚群(分别为图1和图2),以及它们每只小鼠的相对总数(图3)。 对骨髓细胞的流式细胞术分析表明,CP由CD11b + CX3CR1 + F4 / 80high BAM填充,占CP处CD45 +免疫细胞的近80%。这些BAM根据其MHC-II…

Discussion

旨在了解对大脑稳态和疾病的免疫学贡献的研究主要集中在脑实质内的细胞上,而忽略了脑边界,如CP,但这些边界仍然是大脑功能的关键贡献者23。由于CP的小尺寸,驻留免疫细胞的数量少以及访问这种组织的复杂,CP免疫细胞群的分析具有挑战性。对全脑免疫细胞(CD45 +)进行的流式细胞术不允许表征驻留在CP中的罕见免疫群体。为了高精?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢巴斯德动物研究所和CB-UTechS设施成员的帮助。这项工作得到了巴斯德研究所的财政支持。

Materials

anti-mouse CD16/CD32 BD Biosciences 553142 Flow cytometry antibody
Albumin, bovine MP Biomedicals 160069 Blocking reagent
APC anti-mouse CX3CR1 BioLegend 149008 Flow cytometry antibody
APC anti-mouse TCRb BioLegend 109212 Flow cytometry antibody
APC-Cy7 anti-mouse CD4 BioLegend 100414 Flow cytometry antibody
APC-Cy7 anti-mouse IA-IE BioLegend 107628 Flow cytometry antibody
BD FACSymphony A5 Cell Analyzer BD Biosciences Flow cytometry analyzer
BV711 anti-mouse Ly6C BioLegend 128037 Flow cytometry antibody
Collagenase IV Gibco 17104-019 Enzyme to dissociate CP tissue
DAPI Thermo Scientific 62248 Live/dead marker
EDTA Ion chelator
fine scissors FST 14058-11 Dissection tool
FITC anti-mouse CD45 BioLegend 103108 Flow cytometry antibody
Flow controller infusion inset CareFusion RG-3-C Blood perfusion inset
FlowJo software BD Biosciences Analysis software
forceps FST 11018-12 Dissection tool
Heparin Sigma-Aldrich H3149-10KU Anticoagulant
Imalgene Boehringer Ingelheim Ketamine, anesthesic
OneComp eBeads Invitrogen 01-1111-42 Control beads to realize compensation
PBS-/- Gibco 14190-094 Buffer
PBS+/+ Gibco 14040-091 Buffer
PE anti-mouse CD8a BioLegend 100708 Flow cytometry antibody
PE anti-mouse F4/80 BioLegend 123110 Flow cytometry antibody
PE-Dazzle 594 anti-mouse CD11b BioLegend 101256 Flow cytometry antibody
Rompun Bayer Xylazine, anesthesic
thin forceps Dumoxel Biology 11242-40 Dissection tool
Vetergesic Ceva Buprenorphin, analgesic

Referências

  1. Morais, L. H., Schreiber, H. L., Mazmanian, S. K. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology. 19 (4), 241-255 (2021).
  2. Deczkowska, A., Schwartz, M. Targeting neuro-immune communication in neurodegeneration: Challenges and opportunities. Journal of Experimental Medicine. 215 (11), 2702-2704 (2018).
  3. Croese, T., Castellani, G., Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nature Immunology. 22 (9), 1083-1092 (2021).
  4. Erny, D., et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience. 18 (7), 965-977 (2015).
  5. Mrdjen, D., et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. 48 (2), 380-395 (2018).
  6. Korin, B., et al. single-cell characterization of the brain’s immune compartment. Nature Neuroscience. 20 (9), 1300-1309 (2017).
  7. van Hove, H., et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nature Neuroscience. 22 (6), 1021-1035 (2019).
  8. Ajami, B., et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nature Neuroscience. 21 (4), 541-551 (2018).
  9. Wolburg, H., Paulus, W. Choroid plexus: Biology and pathology. Acta Neuropathologica. 119 (1), 75-88 (2010).
  10. Dani, N., et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 184 (11), 3056-3074 (2021).
  11. Falcão, A. M., Marques, F., Novais, A., Sousa, N., Palha, J. A., Sousa, J. C. The path from the choroid plexus to the subventricular zone: Go with the flow. Frontiers in Cellular Neuroscience. 6, (2012).
  12. Shipley, F. B., et al. Tracking calcium dynamics and immune surveillance at the choroid plexus blood-cerebrospinal fluid interface. Neuron. 108 (4), 623-639 (2020).
  13. Mazucanti, C. H., et al. Release of insulin produced by the choroids plexis is regulated by serotonergic signaling. JCI Insight. 4 (23), (2019).
  14. Baruch, K., et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science. 346 (6205), 89-93 (2014).
  15. Deczkowska, A., et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nature Communications. 8 (1), (2017).
  16. Silva-Vargas, V., Maldonado-Soto, A. R., Mizrak, D., Codega, P., Doetsch, F. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell. 19 (5), 643-652 (2016).
  17. Iliff, J. J., et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. Journal of Neuroscience. 34 (49), 16180-16193 (2014).
  18. Redzic, Z. B., Preston, J. E., Duncan, J. A., Chodobski, A., Szmydynger-Chodobska, J. The choroid plexus-cerebrospinal fluid system: From development to aging. Current Topics in Developmental Biology. 71, 1-52 (2005).
  19. da Mesquita, S., et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 560 (7717), 185-191 (2018).
  20. Schwarze, E. -. W. The origin of (Kolmer’s) epiplexus cells. Histochemistry. 44 (1), 103-104 (1975).
  21. Baruch, K., et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proceedings of the National Academy of Sciences of the United States of America. 110 (6), 2264-2269 (2013).
  22. Kunis, G., et al. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain. 136 (11), 3427-3440 (2013).
  23. Prinz, M., Priller, J. Microglia and brain macrophages in the molecular age: From origin to neuropsychiatric disease. Nature Reviews Neuroscience. 15 (5), 300-312 (2014).
  24. Goldmann, T., et al. fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology. 17 (7), 797-805 (2016).
  25. Fung, I. T. H., et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. Journal of Experimental Medicine. 217 (4), (2020).
  26. Kertser, A., et al. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. Science Advances. 5, 4111 (2019).
  27. Shechter, R., et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity. 38 (3), 555-569 (2013).
  28. Yang, A. C., et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 595 (7868), 565-571 (2021).
  29. Baruch, K., et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nature Medicine. 22 (2), 135-137 (2016).
  30. Baruch, K., et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nature Communications. 6, 7967 (2015).
  31. Rodríguez-Rodríguez, N., Flores-Mendoza, G., Apostolidis, S. A., Rosetti, F., Tsokos, G. C., Crispín, J. C. TCR-α/β CD4 − CD8 − double negative T cells arise from CD8 + T cells. Journal of Leukocyte Biology. 108 (3), 851-857 (2020).
  32. Schafflick, D., et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nature Neuroscience. 24 (9), 1225-1234 (2021).
  33. Quintana, E., et al. DNGR-1+ dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. GLIA. 63 (12), 2231-2248 (2015).
  34. Kabashima, K., et al. Biomarkers for evaluation of mast cell and basophil activation. Immunological Reviews. 282 (1), 114-120 (2018).
  35. Li, Q., Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology. 18 (4), 225-242 (2018).
  36. Borst, K., Dumas, A. A., Prinz, M. Microglia: Immune and non-immune functions. Immunity. 54 (10), 2194-2208 (2021).
check_url/pt/63487?article_type=t

Play Video

Citar este artigo
Dominguez-Belloso, A., Schmutz, S., Novault, S., Travier, L., Deczkowska, A. Isolation and Characterization of the Immune Cells from Micro-dissected Mouse Choroid Plexuses. J. Vis. Exp. (180), e63487, doi:10.3791/63487 (2022).

View Video