Summary

小鼠小肠上皮类器官与先天性淋巴细胞的共培养

Published: March 23, 2022
doi:

Summary

该协议为建立小鼠小肠类器官,从小鼠小肠固有层中分离1型先天淋巴细胞,以及在两种细胞类型之间建立3维(3D)共培养物以研究肠上皮细胞和1型先天淋巴细胞之间的双向相互作用提供了详细的说明。

Abstract

类器官与免疫细胞的复杂共培养物为询问支持粘膜稳态微妙平衡的双向相互作用提供了一种多功能工具。这些3D,多细胞系统提供了一种还原论模型,用于解决多因素疾病并解决在研究组织驻留先天淋巴细胞(ILC)等稀有细胞类型时出现的技术难题。本文介绍了一种小鼠系统,该系统结合了小肠类器官和小肠固有层衍生的辅助性1型ILCs(ILC1s),可以很容易地扩展到其他ILC或免疫人群。ILCs是一种组织居民群体,在粘膜中特别丰富,在那里它们促进体内平衡并对损伤或感染迅速反应。与ILC的类器官共培养已经开始揭示肠道中新的上皮免疫信号传导模块,揭示了不同的ILC亚群如何影响肠道上皮屏障的完整性和再生。该协议将能够进一步研究上皮细胞和免疫细胞之间的相互相互作用,这有可能为粘膜稳态和炎症的机制提供新的见解。

Introduction

肠上皮和肠道驻留免疫系统之间的沟通是维持肠道稳态的核心 1。这些相互作用的破坏与局部和全身性疾病有关,包括炎症性肠病(IBD)和胃肠道癌2。最近描述的稳态关键调节因子的一个显着例子来自对先天性淋巴细胞(ILCs)的研究,这些细胞已成为肠道免疫景观中的关键参与者3。ILC是一组异质性先天免疫细胞,主要通过细胞因子介导的信号传导来调节肠道稳态并协调炎症4

小鼠 ILC 根据转录因子、受体和细胞因子表达谱广泛分为亚型5。1 型 ILC,包括细胞毒性自然杀伤 (NK) 细胞和辅助性 1 型 ILCs (ILC1s),分别由 T 细胞中表达的转录因子 (eomesodermin) Eomes 和 T-box 蛋白 (T-bet)6 以及与 T 辅助性 1 型 (TH1) 免疫相关的分泌细胞因子来定义:干扰素-γ (IFNγ) 和肿瘤坏死因子 (TNF),以响应白细胞介素 (IL)-12, IL-15和IL-187。在体内平衡期间,组织常驻ILC1s分泌转化生长因子β(TGF-β)以驱动上皮增殖和基质重塑8。2 型 ILC (ILC2s) 主要 通过 分泌 2 型 T 辅助性 T 辅助细胞 (TH2) 相关细胞因子 IL-4、IL-5 和 IL-13 对蠕虫感染作出反应,其特征在于表达视黄酸相关孤儿受体 (ROR) α (ROR-α)9 和 GATA 结合蛋白 3 (GATA-3)101112.在小鼠中,肠道“炎症性”ILC2s进一步表征为表达杀伤细胞凝集素样受体(亚家族G成员1,KLRG)13 ,其中它们响应上皮簇状细胞衍生的IL-251415。最后,3型ILCs,包括淋巴组织诱导细胞和辅助性3型ILCs(ILC3s),依赖于转录因子ROR-γt16,并聚集在分泌粒细胞巨噬细胞集落刺激因子(GM-CSF),IL-17或IL-22以响应局部IL-1β和IL-23信号17的组。淋巴组织诱导细胞聚集在Peyer贴片中,对于发育过程中这些次级淋巴器官的发育至关重要18,而ILC3s是成年鼠小肠固有层中最丰富的ILC亚型。利用最早的鼠肠类器官共培养系统之一与ILC3s来梳理细胞因子IL-22对信号传感器和转录激活剂3(STAT-3)介导的富含亮氨酸重复序列含有G蛋白偶联受体5(Lgr5)+ 肠干细胞增殖的影响19,这是再生ILC上皮相互作用的有力例子。ILC表现出器官2021 之间的印记异质性,并且响应于极化细胞因子22,在亚群之间表现出可塑性。是什么推动了这些组织特异性印记和可塑性差异,以及它们在IBD23等慢性疾病中的作用,仍然是令人兴奋的话题,可以使用类器官共培养来解决。

肠道类器官已成为研究肠道上皮2425的成功和可靠的模型。这些是由培养肠上皮Lgr5 + 干细胞或整个分离的隐窝产生的,其中包括作为Wnt家族成员3A(Wnt3a)的内源性来源的Paneth细胞。这些3D结构在合成水凝胶26 或模仿基底层固有体的生物材料中维持,例如,热交联基底细胞外基质(TBEM),并进一步补充模仿周围生态位的生长因子,最着名的是上皮生长因子(EGF),骨形态发生蛋白(BMP)抑制剂Noggin,以及Lgr5配体和Wnt激动剂R-Spondin127.在这些条件下,类器官维持上皮蜂基极性,并用萌芽的干细胞隐窝来概括肠上皮的隐窝绒毛结构,这些隐窝在类器官的中心最终分化为吸收细胞和分泌细胞,然后通过anoikis28脱落到内部假羽化物中。虽然单独使用肠道类器官作为上皮发育和动力学的还原论模型具有巨大的优势2930,但它们在理解这些行为如何被免疫区室调节,影响甚至破坏方面具有巨大的未来潜力。

在下面的方案中,描述了小鼠小肠类器官和固有层衍生的ILC1s之间的共培养方法,该方法最近用于鉴定该人群如何意外地减少炎症的肠道特征,而不是 通过 该系统中的TGF-β促进上皮增殖的增加8

Protocol

所有实验必须按照并遵守所有相关的动物使用监管和制度指南完成。以下文章和视频中描述的研究的伦理批准是根据并符合所有相关的动物使用监管和制度指南获得的。 所有小鼠均根据标准伦理程序通过宫颈脱位进行剔除,由训练有素的个体进行。在器官和组织采集之前,进行股动脉切片或斩首(根据手头的方案)作为死亡的确认性评估。根据1986年英国动物(科学程序)法?…

Representative Results

成功完成后,新分离的隐窝应在2-4天内形成萌芽的隐窝结构(图1A)。健康和健壮的类器官培养物应积极生长,并可以按照方案中的详细说明进行传代和扩增。 该协议描述了从RORγtGFP 小鼠转基因报告系中分离小肠ILC1,这允许通过FACS分离活ILC1(图2)。使用此处概述的方案,预期的ILC1计数范围为350-3,500个分离的细胞。 …

Discussion

该协议描述了建立小鼠小肠类器官的方法,通过在肠道解离方案期间最小化淋巴细胞的丢失来分离罕见的ILC1,并在这两个区室之间建立共培养。该方案有许多步骤,虽然有些步骤特定于ILC1s,但这种方法可以应用于其他肠道免疫细胞类型,并且共培养设置可以模块化地适应个别研究问题。这里重点介绍了几个关键步骤(建议不要偏离),以及该协议中技术上更具挑战性的元素的故障排除指南。

Declarações

The authors have nothing to disclose.

Acknowledgements

E.R.承认惠康信托基金会的博士学位奖学金(215027/Z/18/Z)。G.M.J.承认惠康信托基金会的博士学位(203757/Z/16/A)。华盛顿特区承认NIHR GSTT BRC的博士学位。J.F.N.授予Marie Skłodowska-Curie奖学金,国王奖奖学金,RCUK / UKRI卢瑟福基金奖学金(MR / R024812 / 1)以及Wellcome Trust的科学种子奖(204394 / Z / 16 / Z)。我们还感谢盖伊医院的BRC流式细胞术核心团队。Rorc(γt)-GfpTG C57BL/6报告小鼠是G. Eberl(法国巴黎巴斯德研究所)的慷慨礼物。CD45.1 C57BL / 6小鼠由T. Lawrence(伦敦国王学院,伦敦)和P. Barral(伦敦国王学院,伦敦)善意地给予。

Materials

Reagents
2-Mercaptoethanol Gibco 21985023
Anti-mouse CD45 (BV510) BioLegend 103137
Anti-mouse NK1.1 (PE) Thermo Fisher Scientific 12-5941-83
B-27 Supplement (50X), serum free Gibco 17504044
CD127 Monoclonal Antibody (APC) Thermo Fisher Scientific 17-1271-82
CD19 Monoclonal Antibody (eFluor 450) Thermo Fisher Scientific 48-0193-82
CD3e Monoclonal Antibody (eFluor 450) Thermo Fisher Scientific 48-0051-82
CD5 Monoclonal Antibody (eFluor 450) Thermo Fisher Scientific 48-0031-82
CHIR99021 Tocris 4423/10
COLLAGENASE D, 500MG Merck 11088866001
Cultrex HA- RSpondin1-Fc HEK293T Cells Cell line was used to harvest conditioned RSpondin1 supernatant, the cell line and Materials Transfer Agreement was provided by the Board of Trustees of the Lelands Stanford Junior University (Calvin Kuo, MD,PhD, Stanford University)
DISPASE II (NEUTRAL PROTEASE, GRADE II) Merck 4942078001
DMEM/F12 (1:1) (1X) Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 (Advanced DMEM/F12) Gibco 11320033
DNASE I, GRADE II Merck 10104159001
Dulbecco's Modified Eagle Medium (1X) Gibco 21969-035
Ethilenediamine Tetraacetate Acid Thermo Fisher Scientific BP2482-100
FC block 2B Scientific BE0307
Fetal Bovine Serum, qualified, hear inactivated Gibco 10500064
GlutaMAX (100X) Gibco 3050-038
Hanks' Balanced Salt Solution (10X) Gibco 14065056
HBSS (1X) Gibco 12549069
HEK-293T- mNoggin-Fc Cells Cell line was used to harvest conditioned Noggin supernatant, cell line acquired through Materials Transfer Agreement with the Hubrecth Institute, Uppsalalaan8, 3584 CT Utrecht, The Netherlands, and is based on the publication by Farin, Van Es, and Clevers Gastroenterology (2012).
HEPES Buffer Solution (1M) Gibco 15630-056
KLRG1 Monoclonal Antibody (PerCP eFluor-710) Thermo Fisher Scientific 46-5893-82
Live/Dead Fixable Blue Dead Cell Stain Kit, for UV excitation Thermo Fisher Scientific L23105
Ly-6G/Ly-6C Monoclonal Antibody (eFluor 450) Thermo Fisher Scientific 48-5931-82
Matrigel Growth Factor Reduced Basement Membrane Matrix, Phenol Red-free, LDEV-free Corning 356231
N-2 Supplement (100X) Gibco 17502048
N-acetylcysteine (500mM) Merck A9165
NKp46 Monoclonal Antibody (PE Cyanine7) Thermo Fisher 25-3351-82
PBS (1 X) 7.2 pH Thermo Fisher Scientific 12549079
PBS (10X) Gibco 70013032
Percoll Cytiva 17089101
Recombinant Human EGF, Animal-Free Protein R&D Systems AFL236
Recombinant Human IL-15 GMP Protein, CF R&D Systems 247-GMP
Recombinant Human IL-2 (carrier free) BioLegend 589106
Recombinant Mouse IL-7 (carrier free) R&D Systems 407-ML-005/CF
UltraComp eBeads Thermo Fisher Scientific 01-2222-42
Y-27632 dihydrochloride (ROCK inhibitor) Bio-techne 1254
Plastics
50 mL tube Falcon 10788561
1.5 mL tube Eppendorf 30121023
10 mL pippette StarLab E4860-0010
15 mL tube Falcon 11507411
25 mL pippette StarLab E4860-0025
p10 pippette tips StarLab S1121-3810-C
p1000 pippette tips StarLab I1026-7810
p200 pippette tips StarLab E1011-0921
Standard tissue culture treated 24-well plate Falcon 353047
Equipment
Centrifuge Eppendorf 5810 R
CO2 and temperature controled incubator Eppendorf Galaxy 170 R/S
Flow Assisted Cellular Sorter BD equipment FACS Aria II
Heated shaker Stuart Equipment SI500
Ice box
Inverted light microscope Thermo Fisher Scientific EVOS XL Core Imaging System (AMEX1000)
p10 pippette Eppendorf 3124000016
p1000 pippette Eppendorf 3124000063
p200 pippette Eppendorf 3124000032
Pippette gun Eppendorf 4430000018
Wet ice

Referências

  1. Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F., Becker, C. Mend your fences. Cellular and Molecular Gastroenterology and Hepatology. 4 (1), 33-46 (2017).
  2. Peterson, L. W., Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology. 14, 141-153 (2014).
  3. Diefenbach, A., Gnafakis, S., Shomrat, O. Innate lymphoid cell-epithelial cell modules sustain intestinal homeostasis. Immunity. 52 (3), 452-463 (2020).
  4. Ebbo, M., Crinier, A., Vély, F., Vivier, E. Innate lymphoid cells: major players in inflammatory diseases. Nature Reviews Immunology. 17 (11), 665-678 (2017).
  5. Vivier, E., et al. Innate lymphoid cells: 10 years on. Cell. 174 (5), 1054-1066 (2018).
  6. Klose, C. S. N., et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 157 (2), 340-356 (2014).
  7. Bernink, J. H., et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 43 (1), 146-160 (2015).
  8. Jowett, G. M., et al. ILC1 drive intestinal epithelial and matrix remodelling. Nature Materials. 20 (2), 250-259 (2020).
  9. Wong, S. H., et al. Transcription factor RORα is critical for nuocyte development. Nature Immunology. 13, 229-236 (2012).
  10. Neill, D. R., et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 464, 1367-1370 (2010).
  11. Mjösberg, J., et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity. 37 (4), 649-659 (2012).
  12. Hoyler, T., et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 37 (4), 634-648 (2012).
  13. Huang, Y., et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nature Immunology. 16, 161-169 (2014).
  14. von Moltke, J., Ji, M., Liang, H. E., Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 529, 221-225 (2016).
  15. Gerbe, F., et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature. 529, 226-230 (2016).
  16. Eberl, G., et al. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nature Immunology. 5, 64-73 (2004).
  17. Spits, H., et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nature Reviews Immunology. 13, 145-149 (2013).
  18. Mebius, R. E., Rennert, P., Weissman, I. L. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 7 (4), 493-504 (1997).
  19. Lindemans, C. A., et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 528 (7583), 560-564 (2015).
  20. Meininger, I., et al. Tissue-specific features of innate lymphoid cells. Trends in Immunology. 41 (10), 902-917 (2020).
  21. Dutton, E. E., et al. Characterisation of innate lymphoid cell populations at different sites in mice with defective T cell immunity. Wellcome Open Research. 2, 117 (2018).
  22. Bal, S. M., Golebski, K., Spits, H. Plasticity of innate lymphoid cell subsets. Nature Reviews Immunology. 20, 552-565 (2020).
  23. Bernink, J. H., et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunology. 14, 221-229 (2013).
  24. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  25. Ootani, A., et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nature Medicine. 15 (6), 701-706 (2009).
  26. Gjorevski, N., et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 539 (7630), 560-564 (2016).
  27. Sato, T., Clevers, H. Primary mouse small intestinal epithelial cell cultures. Methods in Molecular Biology. 945, 319-328 (2012).
  28. Date, S., Sato, T. Mini-gut organoids: reconstitution of the stem cell niche. Annual Review of Cell and Developmental Biology. 31, 269-289 (2015).
  29. Bartfeld, S. Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Biologia do Desenvolvimento. 420 (2), 262-270 (2016).
  30. Dutta, D., Heo, I., Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends in Molecular Medicine. 23 (5), 393-410 (2017).
  31. Tallapragada, N. P., et al. Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell. 28 (9), 1516-1532 (2021).
  32. Qiu, Z., Sheridan, B. S. Isolating lymphocytes from the mouse small intestinal immune system. Journal of Visualized Experiments: JoVE. (132), e57281 (2018).
  33. Sato, T., Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 340 (6137), 1190-1194 (2013).
  34. O’Rourke, K. P., Ackerman, S., Dow, L. E., Lowe, S. W. Isolation, culture, and maintenance of mouse intestinal stem cells. Bio-protocol. 6 (4), 1733 (2016).
  35. Serra, D., et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 569 (7754), 66-72 (2019).
  36. Lukonin, I., et al. Phenotypic landscape of intestinal organoid regeneration. Nature. 586 (7828), 275-280 (2020).
  37. Cardoso, V., et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature. 549 (7671), 277-281 (2017).
  38. Gury-BenAri, M., et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. 166 (5), 1231-1246 (2016).
  39. Seehus, C., Kaye, J. In vitro differentiation of murine innate lymphoid cells from common lymphoid progenitor cells. Bio-protocol. 6 (6), 1770 (2016).
check_url/pt/63554?article_type=t

Play Video

Citar este artigo
Read, E., Jowett, G. M., Coman, D., Neves, J. F. Co-Culture of Murine Small Intestine Epithelial Organoids with Innate Lymphoid Cells. J. Vis. Exp. (181), e63554, doi:10.3791/63554 (2022).

View Video