Summary

Konfokal mikroskopi til måling af tre tilstande af fusionsporedynamik i binyrekromaffinceller

Published: March 16, 2022
doi:

Summary

Denne protokol beskriver en konfokal billeddannelsesteknik til påvisning af tre fusionstilstande i bovin adrenal kromaffinceller. Disse fusionstilstande omfatter 1) tæt fusion (også kaldet kiss-and-run), der involverer fusionsporeåbning og lukning, 2) opholdsfusion, der involverer fusionsporeåbning og vedligeholdelse af den åbne pore, og 3) krympefusion, der involverer smeltet vesikelkrympning.

Abstract

Dynamisk fusion pore åbning og lukning medierer exocytose og endocytose og bestemmer deres kinetik. Her demonstreres det i detaljer, hvordan konfokal mikroskopi blev brugt i kombination med patch-clamp-optagelse til at detektere tre fusionstilstande i primære dyrkningskrumbarkhormonceller. De tre fusionstilstande omfatter 1) tæt fusion (også kaldet kiss-and-run), der involverer fusionsporeåbning og lukning, 2) opholdsfusion, der involverer fusionsporeåbning og vedligeholdelse af den åbne pore, og 3) krympefusion, der involverer krympning af den fusionsgenererede Ω-formprofil, indtil den smelter helt sammen ved plasmamembranen.

For at detektere disse fusionstilstande blev plasmamembranen mærket ved overekspression af mNeonGreen fastgjort med PH-domænet for phospholipase C δ (PH-mNG), som binder til phosphatidylinositol-4,5-bisphosphat (PtdIns (4,5) P2) ved plasmamembranens cytosolvendte folder; vesikler blev fyldt med den fluorescerende falske neurotransmitter FFN511 for at detektere frigivelse af vesikulært indhold; og Atto 655 blev inkluderet i badeopløsningen for at detektere fusionsporelukning. Disse tre fluorescerende sonder blev afbildet samtidigt ved ~ 20-90 ms pr. Ramme i levende kromaffinceller for at detektere fusionsporeåbning, indholdsfrigivelse, fusionsporelukning og fusion af vesikelstørrelsesændringer. Analysemetoden er beskrevet for at skelne mellem tre fusionstilstande og disse fluorescensmålinger. Metoden beskrevet her kan i princippet gælde for mange sekretoriske celler ud over kromaffinceller.

Introduction

Membranfusion formidler mange biologiske funktioner, herunder synaptisk transmission, blodsukkerhomeostase, immunrespons og viral indgang 1,2,3. Exocytose, der involverer vesikelfusion ved plasmamembranen, frigiver neurotransmittere og hormoner for at opnå mange vigtige funktioner, såsom neuronale netværksaktiviteter. Fusion åbner en pore for at frigive vesikulært indhold, hvorefter poren kan lukke for at hente fusionsvesikel, som kaldes kiss-and-run 1,4. Både irreversibel og reversibel fusionsporeåbning kan måles med celletilsluttede kapacitansoptagelser kombineret med fusionsporekonduktansoptagelser af enkelt vesikelfusion.

Dette fortolkes ofte som udtryk for fuldkollapsfusion, der involverer udvidelse af fusionen indtil udfladning af smelteversilen, og kys-og-løb, der involverer fusionsporeåbning og lukning, henholdsvis 5,6,7,8,9,10,11,12,13 . Nylige konfokale og stimulerede emissionsudtømning (STED) billeddannelsesundersøgelser i kromaffinceller observerede direkte fusionsporeåbning og lukning (kiss-and-run, også kaldet tæt fusion), fusionsporeåbning, der opretholder en Ω form med en åben pore i lang tid, betegnet opholdsfusion og krympning af fusionsveklen, indtil den er fuldstændig fusioneret med plasmamembranen, som erstatter fuldkollapsfusionsfusion til fusion af vesikler med plasmamembranen4, 8,14,15,16,17.

I neuroner er fusionsporeåbning og -lukning blevet detekteret med billeddannelse, der viser frigivelsen af kvanteprikker forudindlæst i vesikler, der er større end fusionsporen, og med fusionsporekonduktansmålinger ved frigivelsesfladen af nerveterminaler 5,18,19. Adrenal kromaffinceller anvendes i vid udstrækning som en model til undersøgelse af exo- og endocytose20,21. Selvom kromaffinceller indeholder store tætte kernevesikler, mens synapser indeholder små synaptiske vesikler, er exocytose- og endocytoseproteinerne i kromaffinceller og synapser ret analoge 10,11,12,20,21,22,23.

Her beskrives en metode til måling af disse tre fusionstilstande ved hjælp af en konfokal billeddannelsesmetode kombineret med elektrofysiologi i bovin adrenalkromaffinceller (figur 1). Denne metode involverer indlæsning af fluorescerende falske neurotransmittere (FFN511) i vesikler for at detektere exocytose; tilsætning af Atto 655 (A655) i badeopløsningen for at fylde den fusionsgenererede Ω-formprofil og mærkning af plasmamembranen med PH-domænet for phospholipase C δ (PH), som binder til PtdIns (4,5) P2 ved plasmamembranen 8,15,24. Fusionsporedynamik kan detekteres gennem ændringer i forskellige fluorescerende intensiteter. Selvom det er beskrevet for chromaffinceller, kan princippet om denne metode, der er beskrevet her, anvendes bredt på mange sekretoriske celler langt ud over kromaffinceller.

Protocol

BEMÆRK: Dyrebrugsproceduren fulgte NIH-retningslinjerne og blev godkendt af NIH Animal Care and Use Committee. 1. Bovin kromaffincellekultur Forbered Lockes opløsning (tabel 1) og autoklaveværktøjer 1 dag før kromaffincellekultur. Få kvæg binyrerne fra et lokalt slagteri på kulturdagen, og hold dem nedsænket i iskold Lockes opløsning før dissektion.BEMÆRK: Binyrerne er fra 21-27 måneder gamle, sunde, sorte Angus af begge k?…

Representative Results

Efter de eksperimentelle procedurer vist i figur 1 og figur 2 blev chromaffinceller fra kvæg binyrerne transficeret med PH-mNG for at mærke plasmamembranen; A655 blev tilføjet til badeopløsningen for at detektere lukning af fusionsporer; og fluorescerende falsk neurotransmitter FFN511 blev indlæst i vesikler til påvisning af frigivelse. Dernæst blev XY-plan konfokal timelapse billeddannelse af FFN511, PH-mNG og A655 udført hver 20-90 ms i cellebunden (Z-…

Discussion

En konfokal mikroskopisk billeddannelsesmetode er beskrevet for at detektere dynamikken i fusionspore og transmitterfrigivelse samt tre fusionstilstande, tæt fusion, opholdsfusion og krympefusion i bovin adrenalchromffinceller 4,24. En elektrofysiologisk metode til at depolarisere cellen og derved fremkalde exo- og endocytose er beskrevet. Systematisk konfokal billedbehandling giver information om forskellige former for poreadfærd for fusions- og fissionshænde…

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi takker NINDS Intramural Research Programs (ZIA NS003009-13 og ZIA NS003105-08) for at støtte dette arbejde.

Materials

Adenosine 5'-triphosphate magnesium salt Sigma A9187-500MG ATP for preparing internal solution
Atto 655 ATTO-TEC GmbH AD 655-21 Atto dye to label bath solution
Basic Nucleofector for Primary Neurons Lonza VSPI-1003 Electroporation transfection buffer along with kit
Boroscilicate capillary glass pipette Warner Instruments 64-0795 Standard wall with filament OD=2.0 mm ID=1.16 mm Length=7.5 cm
Bovine serum albumin Sigma A2153-50G Reagent for gland digestion
Calcium Chloride 2 M Quality Biological 351-130-721 Reagent for preparing bath solution
Cell Strainers, 100 µm Falcon 352360 Material for filtering chromaffin cell suspension
Cesium hydroxide solution Sigma 232041 Reagent for preparing internal solution and Cs-glutamate/Cs-EGTA stock buffer
Collagenase P Sigma 1.1214E+10 Enzyme for gland digestion
Coverslip Neuvitro GG-14-Laminin GG-14-Laminin, 14 mm dia.#1 thick 60 pieces Laminin coated German coverslips
D-(+)-Glucose Sigma G8270-1KG Reagent for preparing Locke’s solution and bath solution
DMEM ThermoFisher Scientific 11885092 Reagent for preparing culture medium
EGTA Sigma 324626-25GM Reagent for preparing Cs-EGTA stock buffer for bath solution
Electroporation and Nucleofector Amaxa Biosystems Nucleofector II Transfect plasmids into cells
Fetal bovine serum ThermoFisher Scientific 10082147 Reagent for preparing culture medium
FFN511 Abcam ab120331 Fluorescent false neurotransmitter to label vesicles
Guanosine 5'-triphosphate sodium salt hydrate Sigma G8877-250MG GTP for preparing internal solution
HEPES Sigma H3375-500G Reagent for preparing Locke’s solution
Igor Pro WaveMetrics Igor pro Software for patch-clamp analysis and imaging data presentation
Leica Application Suite X software Leica LAS X software Confocal software for imaging data collection and analysis
Leica TCS SP5 Confocal Laser Scanning Microscope Leica Leica TCS SP5 Confocal microscope for imaging data collection
L-Glutamic acid Sigma 49449-100G Reagent for preparing Cs-glutamate stock buffer for bath solution
Lock-in amplifier Heka Lock-in Software for capacitance recording
Magnesium Chloride 1 M Quality Biological 351-033-721EA Reagent for preparing internal solution and bath solution
Metallized Hemacytometer Hausser Bright-Line Hausser Scientific 3120 Counting chamber
Microforge Narishige MF-830 Polish pipettes to enhance the formation and stability of giga-ohm seals
Millex-GP Syringe Filter Unit, 0.22 µm Millipore SLGPR33RB Material for glands wash and digestion
mNG(mNeonGreen) Allele Biotechnology ABP-FP-MNEONSB Template for PH-mNeonGreen construction
Nylon mesh filtering screen 100 micron EIKO filtering co 03-100/32 Material for filtering medulla suspension
Patch clamp EPC-10 Heka EPC-10 Amplifier for patch-clamp data collection
PH-EGFP Addgene Plasmid #51407 Backbone for PH-mNeonGreen construction
Pipette puller Sutter Instrument P-97 Make pipettes for patch-clamp recording
Potassium Chloride Sigma P5404-500G Reagent for preparing Locke’s solution and bath solution
Pulse software Heka Pulse Software for patch-clamp data collection
Recording chamber Warner Instruments 64-1943/QR-40LP coverslip chamber, apply patch-clamp pipette on live cells
Sodium chloride Sigma S7653-1KG Reagent for preparing Locke’s solution, bath solution and internal solution
Sodium hydroxide Sigma S5881-500G Reagent for preparing Locke’s solution
Sodium phosphate dibasic Sigma S0876-500G Reagent for preparing Locke’s solution
Sodium phosphate monobasic Sigma S8282-500G Reagent for preparing Locke’s solution
Stirring hot plate Barnsted/Thermolyne type 10100 Heater for pipette coating with wax
Syringe, 30 mL Becton Dickinson 302832 Material for glands wash and digestion
Tetraethylammonium chloride Sigma T2265-100G TEA for preparing bath solution
Trypsin inhibitor Sigma T9253-5G Reagent for gland digestion
Type F Immersion liquid Leica 195371-10-9 Leica confocal mounting oil

Referências

  1. Wu, L. G., Hamid, E., Shin, W., Chiang, H. C. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annual Review of Physiology. 76, 301-331 (2014).
  2. Chang, C. W., Chiang, C. W., Jackson, M. B. Fusion pores and their control of neurotransmitter and hormone release. Journal of General Physiology. 149 (3), 301-322 (2017).
  3. Harrison, S. C. Viral membrane fusion. Nature Structural & Molecular Biology. 15 (7), 690-698 (2008).
  4. Zhao, W. D., et al. Hemi-fused structure mediates and controls fusion and fission in live cells. Nature. 534 (7608), 548-552 (2016).
  5. Klyachko, V. A., Jackson, M. B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature. 418 (6893), 89-92 (2002).
  6. Albillos, A., et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature. 389 (6650), 509-512 (1997).
  7. He, L., Wu, X. S., Mohan, R., Wu, L. G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature. 444 (7115), 102-105 (2006).
  8. Chiang, H. C., et al. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nature Communications. 5, 3356 (2014).
  9. Sharma, S., Lindau, M. The fusion pore, 60 years after the first cartoon. Federation of European Biochemical Societies Letters. 592 (21), 3542-3562 (2018).
  10. Jorgacevski, J., et al. Munc18-1 tuning of vesicle merger and fusion pore properties. Journal of Neuroscience. 31 (24), 9055-9066 (2011).
  11. Rituper, B., et al. Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium. 101, 102503 (2021).
  12. Gucek, A., et al. Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cellular and Molecular Life Sciences. 73 (19), 3719-3731 (2016).
  13. Grabner, C. P., Moser, T. Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells. Proceedings of the National Academy of Sciences of the United States of America. 115 (50), 12811-12816 (2018).
  14. Wen, P. J., et al. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nature Communications. 7, 12604 (2016).
  15. Shin, W., et al. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. Cell. 173 (4), 934-945 (2018).
  16. Shin, W., et al. Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of Exocytotic Contents. Cell Reports. 30 (2), 421-431 (2020).
  17. Ge, L., Shin, W., Wu, L. -. G. Visualizing sequential compound fusion and kiss-and-run in live excitable cells. bioRxiv. , (2021).
  18. Zhang, Q., Li, Y., Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science. 323 (5920), 1448-1453 (2009).
  19. He, L., Wu, X. S., Mohan, R., Wu, L. G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature. 444 (7115), 102-105 (2006).
  20. Androutsellis-Theotokis, A., Rubin de Celis, M. F., Ehrhart-Bornstein, M., Bornstein, S. R. Common features between chromaffin and neural progenitor cells. Molecular Psychiatry. 17 (4), 351 (2012).
  21. Bornstein, S. R., et al. Chromaffin cells: the peripheral brain. Molecular Psychiatry. 17 (4), 354-358 (2012).
  22. Park, Y., Kim, K. T. Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Cellular Signalling. 21 (10), 1465-1470 (2009).
  23. Thahouly, T., Niedergang, F., Vitale, N., Gasman, S. Bovine Chromaffin Cells: Culture and Fluorescence Assay for Secretion. Exocytosis and Endocytosis. Methods in Molecular Biology. 2233, (2021).
  24. Shin, W., et al. Preformed Omega-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron. 109 (19), 3119-3134 (2021).
  25. O’Connor, D. T., et al. Primary culture of bovine chromaffin cells. Nature Protocols. 2 (5), 1248-1253 (2007).
  26. Wu, X. S., et al. Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells. Biophysical Journal. 113 (11), 2406-2414 (2017).
  27. Revelo, N. H., et al. A new probe for super-resolution imaging of membranes elucidates trafficking pathways. Journal of Cell Biology. 205 (4), 591-606 (2014).
  28. Gao, J., Liao, J., Yang, G. -. Y. CAAX-box protein, prenylation process and carcinogenesis. American journal of translational research. 1 (3), 312-325 (2009).
  29. Schermelleh, L., et al. Super-resolution microscopy demystified. Nature Cell Biology. 21 (1), 72-84 (2019).
  30. Ceccarelli, B., Hurlbut, W. P., Mauro, A. Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. Journal of Cell Biology. 54 (1), 30-38 (1972).
  31. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods. 3 (10), 793-795 (2006).
  32. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313 (5793), 1642-1645 (2006).
  33. Fish, K. N. Total internal reflection fluorescence (TIRF) microscopy. Current Protocols in Cytometry. , 18 (2009).
  34. Schmidt, R., et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nature Communications. 12 (1), 1478 (2021).
check_url/pt/63569?article_type=t

Play Video

Citar este artigo
Han, S., Wang, X., Cordero, N., Wu, L. Confocal Microscopy to Measure Three Modes of Fusion Pore Dynamics in Adrenal Chromaffin Cells. J. Vis. Exp. (181), e63569, doi:10.3791/63569 (2022).

View Video