Summary

使用荧光辅助识别技术检测和去除牙齿颜色的复合树脂

Published: July 27, 2022
doi:

Summary

荧光辅助识别技术是一种实用、快速、可靠的复合树脂修复体与牙齿物质的区分方法,有助于复合树脂修复体和复合粘合创伤夹板的微创和完全去除。

Abstract

检测和去除牙齿颜色的填充材料是每个牙医面临的主要挑战。荧光辅助识别技术(FIT)是一种非侵入性工具,有助于区分复合树脂材料与健全的牙齿物质。与传统照明相比,FIT是一种非常准确、可靠和快速的诊断方法。当复合树脂以大约 398 ± 5 nm 的波长照射时,某些荧光成分使复合树脂看起来比牙齿结构更亮。任何具有适当波长的荧光诱导光源都可用于这种方法。最佳情况下,这种技术无需额外的自然或人工照明即可使用。FIT的应用可用于诊断目的,例如牙科图表,此外还可用于复合树脂修复体的完全和微创去除,支架脱粘和创伤夹板去除。可以通过重叠的术前和术后扫描以及使用合适的软件进行后续计算来评估复合物切除后的体积变化。

Introduction

与传统照明(例如,通过牙科综合治疗台灯12)相比FIT 的应用有助于将复合树脂材料与健全的牙齿物质区分开来。当材料发射的光波长高于吸收波长时,就会发生荧光。由于这种照明,材料看起来比牙齿3更亮。复合树脂材料的最大荧光发生在波长为398±5纳米3时。荧光在复合树脂材料中出现的是由于稀土氧化物添加到玻璃填料中,一些主要成分为复合树脂45.这些荧光物质的加入旨在使复合树脂的光学性能适应牙齿结构,以提高复合树脂的美学性能45。FIT适用于许多复合树脂材料,因为它们显示出这些荧光特性3。然而,荧光随着复合树脂材料的老化而降低6,789

将复合树脂材料与传统照明的牙齿结构区分开来是一项挑战,因为现代复合树脂材料几乎完全匹配牙齿物质的光学性能1011。复合树脂的误诊导致牙科图表不准确、龋齿风险评估错误、治疗计划不当11.此外,流行病学数据被伪造12.

复合树脂因其操作简单、美观和临床性能而成为直接修复的首选材料13。然而,由于继发性龋齿、骨折或其他原因,许多复合修复体必须更新1415。然而,在传统的光照条件下,去除残留的复合树脂材料可能很苛刻。即使使用放大辅助工具并使用触觉探头或对牙齿进行广泛的干燥,有时也很难将复合残留物与健全的牙齿结构区分开来。在去除粘合剂修复体期间,复合残留物的残留物会降低进一步修复体的质量,并且由于边缘可能变色而造成美学障碍1161718,19202122.相反,由于对复合树脂与牙齿结构的误诊而导致的过度制备可能导致不必要的物质损失12

在牙科创伤学中,在许多情况下,使用创伤夹板固定受伤的牙齿是频繁且强制性的23。创伤夹板通常使用可流动的复合树脂材料固定在牙齿上。在这种情况下,复合树脂材料的去除不完全可能导致上述损伤。由于牙齿创伤主要发生在前牙,因此美学的损害和进一步重建的充分粘附至关重要。因此,本文的目的是演示FIT方法作为检测和去除复合树脂材料的高效直接方法的应用。

Protocol

本研究中使用的牙齿是当地伦理委员会(EKNZ UBE-15/111)批准的项目的一部分。参与者提供了书面知情同意书,所有数据都进行了去识别化以保护患者的机密性。 1. 使用FIT检测牙齿颜色的复合树脂材料 使房间变暗(自然光和人造光)。 佩戴具有紫外线防护功能的透明或黄色安全眼镜。 使用荧光诱导光源照亮牙齿物质和牙齿颜色复合树脂修复…

Representative Results

使用FIT方法使大多数复合树脂材料看起来比健全的齿结构更亮(图2和图5)。因此,FIT不仅适用于复合树脂材料的检测,而且还有助于一般复合树脂材料的去除,并且在正畸托槽脱粘和创伤夹板去除过程中明确地用于后牙1,2,24,25,26,27,28<sup…

Discussion

传统的照明(例如通过牙科治疗台灯)是识别复合树脂修复体的不令人满意的诊断工具。为了使用传统照明进行出色的诊断,需要放大辅助、干燥甚至费力地清洁牙齿。即使在理想情况下,传统的照明似乎也是不够的。一项研究表明,常规照明可能导致复合树脂修复体和健全牙齿物质33的误检。FIT方法似乎在许多方面都更胜一筹。FIT是一种具有高精度、重现性和可重复性的诊断?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了瑞士牙科协会的研究资助(SSO研究基金292-16)。

Materials

Bonding Resin Remover, H22ALGK 016 Komet Dental, Lemgo, Germany Any other material/equpiment with the same function/purpose might be used.
Cerec Omicam, Connect SW 5.1.3 Dentsply Sirona, York, PA, USA Any other material/equpiment with the same function/purpose might be used.
Diamant bur Intensiv SA, Montagnola, Switzerland Any other material/equpiment with the same function/purpose might be used.
Mandrell 3M, Saint Paul, MN, USA Any other material/equpiment with the same function/purpose might be used.
MASTERmatic KaVo Dental GmbH, Biberach, Germany Any other material/equpiment with the same function/purpose might be used.
Occlubrush Kerr, Orange, CA, USA brush polishing system
OraCheck Software, Version 5.0.0 Cyfex AG, Zurich, Switzerland Any other material/equpiment with the same function/purpose might be used.
SIROInspect Dentsply Sirona, York, PA, USA Any other material/equpiment with the same function/purpose might be used.
Sof-Lex 3M, Saint Paul, MN, USA Contouring/polishing discs; any other material/equpiment with the same function/purpose might be used.

Referências

  1. Meller, C., Connert, T., Löst, C., ElAyouti, A. Reliability of a Fluorescence-aided Identification Technique (FIT) for detecting tooth-colored restorations: an ex vivo comparative study. Clinical Oral Investigations. 21 (1), 347-355 (2017).
  2. Kiran, R., Chapman, J., Tennant, M., Forrest, A., Walsh, L. J. Fluorescence-aided selective removal of resin-based composite restorative materials: An in vitro comparative study. Journal of Esthetic and Restorative Dentistry. 32 (3), 310-316 (2020).
  3. Meller, C., Klein, C. Fluorescence properties of commercial composite resin restorative materials in dentistry. Dental Materials Journal. 31 (6), 916-923 (2012).
  4. Uo, M., et al. Rare earth oxide-containing fluorescent glass filler for composite resin. Dental Materials Journal. 24 (1), 49-52 (2005).
  5. Fondriest, J. Shade matching in restorative dentistry: the science and strategies. International Journal of Periodontics and Restorative Dentistry. 23, 467-479 (2003).
  6. Takahashi, M. K., et al. Fluorescence intensity of resin composites and dental tissues before and after accelerated aging: a comparative study. Operative Dentistry. 33 (2), 189-195 (2008).
  7. Klein, C., Wolff, D., Ohle, C. V., Meller, C. The fluorescence of resin-based composites: An analysis after ten years of aging. Dental Materials Journal. 40 (1), 94-100 (2020).
  8. Lee, Y. K., Lu, H., Powers, J. M. Changes in opalescence and fluorescence properties of resin composites after accelerated aging. Dental Materials. 22 (7), 653-660 (2006).
  9. Lee, Y. K., Lu, H., Powers, J. M. Optical properties of four esthetic restorative materials after accelerated aging. American Journal of Dentistry. 19 (3), 155-158 (2006).
  10. Dietschi, D. Free-hand composite resin restorations: a key to anterior aesthetics. Practical Periodontics and Aesthetic Dentistry. 7 (7), 15-25 (1995).
  11. Bush, M. A., Hermanson, A. S., Yetto, R. J., Wieczkowski, G. The use of ultraviolet LED illumination for composite resin removal: an in vitro study. General Dentistry. 58 (5), 214-218 (2010).
  12. Baelum, V., Fejerskov, O., Fejerskov, O., Nyvad, B., Kidd, E. A. M. How big is the problem? Epidemiological features of dental caries. Dental Caries-the Disease and its Clinical Management. 3rd edn. , 25 (2015).
  13. Lynch, C. D., et al. Guidance on posterior resin composites: Academy of Operative Dentistry – European Section. Journal of Denistry. 42 (4), 377-383 (2014).
  14. Demarco, F. F., Corrêa, M. B., Cenci, M. S., Moraes, R. R., Opdam, N. J. Longevity of posterior composite restorations: not only a matter of materials. Dental Materials Journal. 28 (1), 87-101 (2012).
  15. Eltahlah, D., Lynch, C. D., Chadwick, B. L., Blum, I. R., Wilson, N. H. F. An update on the reasons for placement and replacement of direct restorations. Journal of Dentistry. 72, 1-7 (2018).
  16. Bonstein, T., Garlapo, D., Donarummo, J., Bush, P. J. Evaluation of varied repair protocols applied to aged composite resin. Journal of Adhesive Dentistry. 7 (1), 41-49 (2005).
  17. Crumpler, D. C., Bayne, S. C., Sockwell, S., Brunson, D., Roberson, T. M. Bonding to resurfaced posterior composites. Dental Materials Journal. 5 (6), 417-424 (1989).
  18. Kupiec, K. A., Barkmeier, W. W. Laboratory evaluation of surface treatments for composite repair. Opererative Dentistry. 21 (2), 59-62 (1996).
  19. Lucena-Martín, C., González-López, S., Navajas-Rodríguez de Mondelo, J. M. The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. Journal of Prosthetic Dentistry. 86 (5), 481-488 (2001).
  20. Hannig, C., Laubach, S., Hahn, P., Attin, T. Shear bond strength of repaired adhesive filling materials using different repair procedures. Journal of Adhesive Dentistry. 8 (1), 35-40 (2006).
  21. Eliades, T., Gioka, C., Heim, M., Eliades, G., Makou, M. Color stability of orthodontic adhesive resins. Angle Orthodontist. 74 (3), 391-393 (2004).
  22. Quirynen, M., et al. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. Journal of Clinical Periodontology. 17 (3), 138-144 (1990).
  23. Diangelis, A. J., et al. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 1. Fractures and luxations of permanent teeth. Dental Traumatology. 28 (1), 2-12 (2012).
  24. Tani, K., Watari, F., Uo, M., Morita, M. Discrimination between composite resin and teeth using fluorescence properties. Dental Materials Journal. 22 (4), 569-580 (2003).
  25. Carson, D. O., Orihara, Y., Sorbie, J. L., Pounder, D. J. Detection of white restorative dental materials using an alternative light source. Forensic Science International. 88 (2), 163-168 (1997).
  26. Kiran, R., Chapman, J., Tennant, M., Forrest, A., Walsh, L. J. Fluorescence-aided selective removal of resin-based composite restorative materials: An in vitro comparative study. Journal of Esthetic and Restorative Dentistry. 32 (3), 310-316 (2020).
  27. Dettwiler, C., et al. Fluorescence-aided composite removal in directly restored permanent posterior teeth. Operative Dentistry. 45 (1), 62-70 (2020).
  28. Dettwiler, C., et al. Evaluation of a Fluorescence-aided Identification Technique (FIT) for removal of composite bonded trauma splints. Dental Traumatology. 34 (5), 353-359 (2018).
  29. Schott, T. C., Meller, C. A. new Fluorescence-aided Identification Technique (FIT) for optimal removal of resin-based bracket bonding remnants after orthodontic debracketing. Quintessence International. 49 (10), 809-813 (2018).
  30. Stadler, O., et al. Evaluation of a Fluorescence-aided Identification Technique (FIT) to assist clean-up after orthodontic bracket debonding. Angle Orthodontist. 89 (6), 876-882 (2019).
  31. Ribeiro, A. A., Almeida, L. F., Martins, L. P., Martins, R. P. Assessing adhesive remnant removal and enamel damage with ultraviolet light: An in-vitro study. American Journal of Orthodontics and Dentofacial Orthopedics. 151 (2), 292-296 (2017).
  32. Klein, C., et al. Minimally invasive removal of tooth-colored restorations: evaluation of a novel handpiece using the fluorescence-aided identification technique (FIT). Clinical Oral Investigations. 28 (8), 2735-2743 (2019).
  33. Leontiev, W., et al. Accuracy of the fluorescence-aided identification technique (FIT) for detecting tooth-colored restorations utilizing different fluorescence-inducing devices: an ex vivo comparative study. Clinical Oral Investigations. 25 (9), 5189-5196 (2021).
  34. Eichenberger, M., Perrin, P., Neuhaus, K. W., Bringolf, U., Lussi, A. Influence of loupes and age on the near visual acuity of practicing dentists. Journal of Biomedical Optics. 16 (3), 035003 (2011).
  35. Hermanson, A. S., Bush, M. A., Miller, R. G., Bush, P. J. Ultraviolet illumination as an adjunctive aid in dental inspection. Journal of Forensic Sciences. 53 (2), 408-411 (2008).
  36. Kiran, R., Chapman, J., Tennant, M., Forrest, A., Walsh, L. J. Detection of tooth-colored restorative materials for forensic purposes based on their optical properties: an in vitro comparative study. Journal of Forensic Sciences. 64 (1), 254-259 (2019).
  37. Kiran, R., Walsh, L. J., Forrest, A., Tennant, M., Chapman, J. Forensic applications: Fluorescence properties of tooth-coloured restorative materials using a fluorescence DSLR camera. Forensic Science International. 273, 20-28 (2017).
  38. Pretty, I. A., Smith, P. W., Edgar, W. M., Higham, S. M. The use of quantitative light-induced fluorescence (QLF) to identify composite restorations in forensic examinations. Journal of Forensic Sciences. 47 (4), 831-836 (2002).
  39. Kiran, R., Chapman, J., Tennant, M., Forrest, A., Walsh, L. J. Direct tooth-colored restorative materials: a comparative analysis of the fluorescence properties among different shades. International Journal of Esthetic Dentistry. 15 (3), 318-332 (2020).

Play Video

Citar este artigo
Magni, E., Leontiev, W., Meller, C., Weiger, R., Connert, T. Detection and Removal of Tooth-Colored Composite Resin Using the Fluorescence-Aided Identification Technique. J. Vis. Exp. (185), e63656, doi:10.3791/63656 (2022).

View Video