Summary

从血浆和实体组织中分离和分析可追溯和功能化的细胞外囊泡

Published: October 17, 2022
doi:

Summary

本协议描述了一种从外周血和实体组织中提取细胞外囊泡的方法,随后对表面抗原和蛋白质货物进行分析。

Abstract

循环和组织驻留的细胞外囊泡(EVs)作为新型治疗诊断生物标志物代表了有希望的靶标,它们成为维持机体稳态和广泛疾病进展的重要参与者。虽然目前的研究重点是具有内体起源的内源性外泌体的特征,但从质膜中起泡的微囊泡在健康和疾病中越来越受到关注,其特征是丰富的表面分子概括了亲本细胞的膜特征。在这里,提出了一种基于差速离心的可重复程序,用于从血浆和实体组织(例如骨骼)中提取和表征EV。该协议进一步描述了电动汽车表面抗原和蛋白质货物的后续分析,因此可以追溯其衍生物,并识别与潜在功能相关的组件。该方法将有助于在生物学、生理学和病理学研究中对 EV 进行相关、功能和机理分析。

Introduction

已经提出细胞外囊泡(EV)来定义细胞释放的脂质双层封闭的细胞外结构1,其在各种生理和病理事件中起重要作用2。健康细胞释放的EV大致可分为两大类,即通过细胞内内吞运输途径3形成的外泌体(或小EV)和细胞质膜向外出芽形成的微囊泡(或大EV)4。虽然许多研究集中在体外5中从培养细胞中收集的EV的功能,但来自循环或组织的EV更加复杂和异质,其优点是反映了体内生物的真实状态6。此外,几乎所有种类的组织都可以在体内产生EV,这些EV可以作为组织内的信使或通过各种体液(尤其是外周血)转移,以促进全身交流7。循环和组织中的电动汽车也是疾病诊断和治疗的目标8

近年来,外泌体的研究深入,微囊泡也具有重要的生物学功能,无需超速离心即可轻松提取,从而促进了基础和临床研究9。值得注意的是,关于从循环和组织中分离的EV的一个关键问题是它们来自不同的细胞类型10。由于微囊泡从质膜中吹出并具有丰富的细胞表面分子9,因此使用亲本细胞膜标记物来鉴定这些EV的细胞起源是可行的。具体而言,流式细胞术(FC)技术可用于检测膜标志物。此外,研究人员可以分离电动汽车并根据功能货物进行进一步分析。

本协议为从体内样品中提取和表征EV提供了全面的程序。EV通过差速离心分离,EV的表征包括通过纳米颗粒跟踪分析(NTA)和透射电子显微镜(TEM)进行形态学鉴定,通过FC进行原产地分析,以及通过蛋白质印迹进行蛋白质货物分析。以小鼠的血浆和上颌骨为代表。研究人员可以参考其他来源的电动汽车的该协议并进行相应的修改。

Protocol

动物实验按照《第四军医大学机构动物护理使用委员会指南》和《ARRIVE指南》进行。在本研究中,使用8周龄的C57Bl / 6小鼠(对雌性或雄性都没有偏好)。分离血浆和组织EV所涉及的步骤如图 1所示。血浆以代表描述EV从体液中分离的过程。以上颌骨为代表,解释EV与实体组织的分离过程。 1. 血浆和上颌骨样本的制备 按照以下步骤制备?…

Representative Results

根据实验工作流程,可以从外周血和实体组织中提取EV(图1)。8周龄小鼠的上颌骨约为0.1±0.05g,可以从小鼠中收集约300μL血浆。按照协议步骤,可以分别收集0.3 mg和3 μg的EV。通过TEM和NTA分析,EV的典型形态特征是直径范围为50-300nm的圆形杯形膜囊泡(图2)。FC可以在有用的对照下检测膜染料标记的EV,FC分析显示了EV上表达的特定膜标志物的百分比,这…

Discussion

在研究电动汽车的特性、命运和功能时,隔离高产量和低污染的电动汽车至关重要。有多种方法可以提取 EV,例如密度梯度离心 (DGC)、体积排阻色谱 (SEC) 和免疫捕获测定420。这里使用了最常用的方法之一,差速离心;这样做的优点是不耗时,它可以产生高产量的EV,易于从有限的样品中分离出来,并且能够根据所使用的样品源修改方法。为了分?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金(32000974,81870796,82170988和81930025)和中国博士后科学基金(2019M663986和BX20190380)的资助。我们感谢国家基础医学实验教学示范中心(AMFU)的帮助。

Materials

4% paraformaldehyde  Biosharp 143174 Transmission electron microscope
Alexa fluor 488 anti-goat secondary antibody Yeason 34306ES60 Flow cytometry
Alexa fluor 488 anti-rabbit secondary antibody Invitrogen A11008 Flow cytometry
Anti-CD18 antibody Abcam ab131044 Flow cytometry
Anti-CD81 antibody Abcam ab109201 Western blot
anti-CD9 antibody Huabio ET1601-9 Western blot
Anti-Mitofilin antibody Abcam ab110329 Western blot
APOA1 Rabbit pAb Abclone A14211 Western blot
BCA protein assay kit TIANGEN PA115 Western blot
BLUeye Prestained Protein Ladder Sigma-Aldrich 94964-500UL Western blot
Bovine serum albumin MP Biomedical 218072801 Western blot
Caveolin-1 antibody Santa Cruz Biotechnology sc-53564 Western blot
CellMask Orange plasma membrane stain Invitrogen C10045 Flow cytometry
Chemiluminescence Amersham Biosciences N/A Western blot
Curved operating scissor JZ Surgical Instrument J21040 EV isolation
Electronic balance Zhi Ke ZK-DST EV isolation
Epoch spectrophotometer BioTek N/A Western blot
Eppendorf tubes Eppendorf 3810X EV isolation
Flotillin-1 antibody PTM BIO PTM-5369 Western blot
Gel imaging system Tanon 4600 Western blot
Golgin84 Novus nbp1-83352 Western blot
Grids – Formvar/Carbon Coated – Copper 200 mesh Polysciences 24915 Transmission electron microscope
Heparin Solution StemCell  7980 EV isolation
Liberase Research Grade Sigma-Aldrich 5401127001 EV isolation
Microscopic tweezer JZ Surgical Instrument JD1020 EV isolation
NovoCyte flow cytometer ACEA N/A Flow cytometry
Omni-PAGE Hepes-Tris Gels Hepes 4~20%, 10 wells Epizyme LK206 Western blot
OSCAR(D-19) antibody Santa Cruz Biotechnology SC-34235 Flow cytometry
PBS (2x) ZHHC PW013 Western blot
Pentobarbital sodium Sigma-Aldrich 57-33-0 Anesthetization
Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) Jacson 115-035-003 Western blot
Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) Jacson 111-035-003 Western blot
Phosphotungstic acid RHAWN 12501-23-4 Transmission electron microscope
PKM2(d78a4) xp rabbit  mab  Cell Signaling 4053t Western blot
Polyethylene (PE) film Xiang yi 200150055 Transmission electron microscope
Polyvinylidene fluoride membranes  Roche 3010040001 Western blot
Protease inhibitors Roche 4693132001 Western blot
Recombinant anti-PGD antibody Abcam ab129199 Western blot
RIPA lysis buffer Beyotime P0013 Western blot
SDS-PAGE loading buffer (5x) Cwbio CW0027S Western blot
Size beads Invitrogen F13839 Flow cytometry
Tabletop High-Speed Micro Centrifuges Hitachi CT15E EV isolation
Transmission electron microscope HITACHI H-7650 Transmission electron microscope
Tween-20 MP Biomedicals 19472 Western blot
Vortex Mixer Genie Scientific Industries SI0425 EV isolation
ZetaView BASIC NTA – Nanoparticle Tracking Video Microscope PMX-120 Particle Metrix N/A Nanoparticle tracking analysis
α-Actinin-4 Rabbit mAb Abclone A3379 Western blot
β-actin Cwbio CW0096M Western blot

Referências

  1. Abels, E. R., Breakefield, X. O. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cellular and Molecular Neurobiology. 36 (3), 301-312 (2016).
  2. Mathieu, M., Martin-Jaular, L., Lavieu, G., Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology. 21 (1), 9-17 (2019).
  3. Van Niel, G., D’Angelo, G., Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology. 19 (4), 213-228 (2018).
  4. Witwer, K. W., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles. 2 (1), 20360 (2013).
  5. Keshtkar, S., Azarpira, N., Ghahremani, M. H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Research & Therapy. 9 (1), 63 (2018).
  6. Thietart, S., Rautou, P. E. Extracellular vesicles as biomarkers in liver diseases: A clinician’s point of view. Journal of Hepatology. 73 (6), 1507-1525 (2020).
  7. Xia, W., et al. Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors. Nature Communications. 12 (1), 6043 (2021).
  8. In’t Veld, S. G. J. G., Wurdinger, T. Tumor-educated pletelets. Blood. 133 (22), 2359-2364 (2019).
  9. Schwager, S. C., Reinhart-King, C. A. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. Current Topics in Membranes. 86, 255-278 (2020).
  10. Brahmer, A., et al. endothelial cells and leukocytes contribute to the exercise-triggered release of extracellular vesicles into the circulation. Journal of Extracellular Vesicles. 8 (1), 1615820 (2019).
  11. Yang, H., et al. Blood collection through subclavian vein puncture in mice. Journal of Visualized Experiments. (147), e59556 (2019).
  12. Han, L., Lam, E. W., Sun, Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Molecular Cancer. 18 (1), 59 (2019).
  13. Gelibter, S., et al. The impact of storage on extracellular vesicles: A systematic study. Journal of Extracellular Vesicles. 11 (2), 12162 (2022).
  14. Forsyth, C. B., Mathews, H. L. Lymphocytes utilize CD11b/CD18 for adhesion to Candida albicans. Cellular Immunology. 170 (1), 91-100 (1996).
  15. Kodama, J., Kaito, T. Osteoclast multinucleation: review of current literature. International Journal of Molecular Sciences. 21 (16), 5685 (2020).
  16. Welsh, J. A., et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. Journal of Extracellular Vesicles. 9 (1), 1713526 (2020).
  17. Durcin, M., et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. Journal of Extracellular Vesicles. 6 (1), 1305677 (2017).
  18. Kowal, J., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences. 113 (8), 968-977 (2016).
  19. Noren Hooten, N., et al. Association of extracellular vesicle protein cargo with race and clinical markers of mortality. Scientific Reports. 9 (1), 17582 (2019).
  20. Sidhom, K., Obi, P. O., Saleem, A. A review of exosomal isolation methods: is size exclusion chromatography the best option. International Journal of Molecular Sciences. 21 (18), 6466 (2020).
  21. Pietrowska, M., Wlosowicz, A., Gawin, M., Widlak, P. MS-based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. Advances in Experimental Medicine and Biology. 1073, 57-76 (2019).
  22. Coumans, F., et al. Methodological guidelines to study extracellular vesicles. Circulation Research. 120 (10), 1632-1648 (2017).
  23. Théry, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  24. Witwer, K. W., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles. 2 (1), 20360 (2013).
  25. Coumans, F., et al. Methodological guidelines to study extracellular vesicles. Circulation Research. 120 (10), 1632-1648 (2017).
  26. Görgens, A., et al. Identification of storage conditions stabilizing extracellular vesicles preparations. Journal of Extracellular Vesicles. 11 (6), 12238 (2020).
  27. Maroto, R., et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. Journal of Extracellular Vesicles. 6 (1), 1359478 (2017).
  28. Zheng, C., et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. Journal of Extracellular Vesicles. 10 (7), 12109 (2021).
  29. Liu, D., et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Research. 28 (9), 918-933 (2018).
  30. Vander Pol, E., van Gemert, M. J., Sturk, A., Nieuwland, R., van Leeuwen, T. G. Single vs. swarm detection of microparticles and exosomes by flow cytometry. Journal of Thrombosis and Haemostasis. 10 (5), 919-930 (2012).
  31. Dawson, G. Isolation of lipid rafts (detergent-resistant microdomains) and comparison to extracellular vesicles (exosomes). Methods in Molecular Biology. 2187, 99-112 (2021).
  32. Zhang, G., et al. Extracellular vesicles: Natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. Journal of Extracellular Vesicles. 10 (2), 12030 (2020).
  33. Vella, L. J., et al. A rigorous method to enrich for exosomes from brain tissue. Journal of Extracellular Vesicles. 6 (1), 1348885 (2017).
check_url/pt/63990?article_type=t

Play Video

Citar este artigo
Cao, Y., Qiu, J., Chen, D., Li, C., Xing, S., Zheng, C., Liu, X., Jin, Y., Sui, B. Isolation and Analysis of Traceable and Functionalized Extracellular Vesicles from the Plasma and Solid Tissues. J. Vis. Exp. (188), e63990, doi:10.3791/63990 (2022).

View Video