Summary

一种半自动且可重现的基于生物学的体定量钙沉积的方法

Published: June 02, 2022
doi:

Summary

心血管疾病是全世界死亡的主要原因。血管钙化大大加重了心血管发病率和死亡率的负担。该协议描述了一种通过荧光成像在 体外 量化血管平滑肌细胞介导的钙沉淀的简单方法。

Abstract

血管钙化涉及一系列退行性病变,包括炎症、细胞表型改变、细胞死亡和钙化抑制剂的缺乏,伴随导致血管弹性和功能丧失。血管钙化是许多疾病(包括慢性肾脏病、糖尿病和动脉粥样硬化)发病率和死亡率的重要因素。目前研究血管钙化的研究模型是有限的,仅在体内钙化发展的后期才可行。用于研究血管钙化的体外工具使用终点测量,增加了对生物材料的需求,并有可能将变异性引入研究。我们展示了一种新型荧光标记探针的应用,该探针与人体血管平滑肌细胞的体外钙化发展结合,并确定体外钙化的实时发展。在该协议中,我们描述了我们新开发的钙化测定的应用,这是一种具有潜在转化应用的疾病建模新工具。我们设想该测定法与更广泛的矿物沉积研究相关,包括骨骼、软骨或牙科研究的应用。

Introduction

血管钙化 (VC) 是心血管疾病发病率和死亡率的独立危险因素123。长期以来被认为是异位矿物沉积的被动化学过程,现在它似乎是一种可改变的组织愈合反应,涉及各种细胞的积极贡献,包括活化的血管平滑肌细胞(hVSMC)作为疾病的驱动因素45体内VC可以通过多层CT扫描来测量,作为动脉粥样硬化负荷的评估6,78目前,范式转变正在进行中,其中VC严重程度被认为是心血管疾病,II型糖尿病,慢性肾病和衰老的危险因素9,10,111213,1415

hVSMC是心血管系统中最丰富的细胞类型,也是VC发展的主要参与者。 体外 hVSMC诱导的钙化是研究心血管疾病的广泛使用的疾病模型1617。然而,大多数用于体 钙化检测的方案使用终点测量,这可能会限制数据采集,需要更多地使用细胞材料,并且可能会减慢研究速度。检测 体外 hVSMC钙化的常用方法包括邻甲酚酞测定法,该测定法测量溶解钙沉积与总蛋白的关系,需要细胞裂解18。此外,使用茜素红染色,其直接与固定细胞或组织上的钙沉积物结合19。要研究邻甲酚酞或茜素红随时间推移的hVSMC钙化,每个时间点需要多次重复,这增加了对生物材料的需求,进而增加了变异性的机会。

在本文中,我们详细介绍了一种新型测定的应用方法,该测定利用hVSMC和荧光成像探针来确定 体外 VC进展,并用作单一终末期钙化测定。我们之前证明,该测定可与邻甲酚酞和茜素红方法直接相媲美,可用于区分不同的培养条件20。除了实时测量外,该测定还可用于确定血清或血浆样品作为临床VC开发的替代标志物的倾向20。这将有助于应用心血管科学和疾病建模的生物学策略。该测定的进一步应用可能是作为转化生物混合系统来评估VC的严重程度或血液成分(如血清或血浆)的进展。

Protocol

1. 细胞接种、维持和钙化诱导 要培养原代细胞,请使用层流气流柜、手套和无菌设备。在进行任何工作之前和之后对手和工作区进行消毒。将所有原代细胞和培养基视为潜在的生物危害,除非另有证明。优选在处置前高压灭菌剩余细胞和培养基。不要化学灭活和高压灭菌,因为这会释放有毒烟雾。 在未包被的细胞培养板上培养hVSMC。 在补充有10%-20S和1%Pen / Str…

Representative Results

结果包括HOECHST染色细胞核的原始图像,RFP标记的钙化和明场图像。可以检测和分析从低(图2)到高(图3)的不同钙化阶段。钙化通常可以使用光学显微镜发现为黑色斑点(图 2D 和图 3B,箭头表示钙化),这对于初步评估和确定何时开始影像学检查很有用。为了提高信噪比,应分析处理后的RFP图像以量化钙…

Discussion

在本手稿中,我们描述了一种用于 体外 钙化测定的半自动方法。对于这种方法,应优化hVSMC钙化的三个关键步骤。首先,细胞密度对于hVSMC钙化的发展至关重要。由于缺乏细胞间接触以及在钙化条件下诱导的应激,hVSMC的低密度将导致缓慢或无钙化和细胞死亡21。高细胞密度导致过度融合,之后细胞衰老22 ,钙化发育停止。在孔板中播种大约70%的汇合度至…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究由欧盟的地平线2020研究和创新计划资助,根据玛丽·斯克洛多夫斯卡-居里赠款协议第722609和764474,NWO ZonMw(MKMD 40-42600-98-13007)。这项研究得到了BioSPX的支持。WJ-D获得德国研究基金会TRR219项目ID 322900939和项目ID 403041552的资助

Materials

Calcium chloride, 93%, anhydrous Thermo Fisher Scientific 349615000
Costar 6-well Clear TC-treated well plates Corning 3516
Cytation 3 System BioTek, Abcoude, The Netherlands
Fetal Bovine Serum Merck F7524-100ML
Fetuin-A-Alexa Fluor-546 Prepared in-house
Gen5 Software v3.10 BioTek
Gibco Medium 199 Thermo Fisher Scientific 11150059
Hoechst 33342, Trihydrochloride Thermo Fisher Scientific H3570
PBS (10X), pH 7.4 Thermo Fisher Scientific 70011044
Penicillin-Streptomycin Thermo Fisher Scientific 15140122
Trypsin-EDTA (0.05%), phenol red Thermo Fisher Scientific 25300062

Referências

  1. Taylor, A. J., Bindeman, J., Feuerstein, I., Cao, F., Brazaitis, M., O’Malley, P. G. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. Journal of the American College of Cardiology. 46 (5), 807-814 (2005).
  2. Arad, Y., Goodman, K. J., Roth, M., Newstein, D., Guerci, A. D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events the St. Francis Heart Study. Journal of the American College of Cardiology. 46 (1), 158-165 (2005).
  3. Detrano, R., et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. New England Journal of Medicine. 358 (13), 1336-1345 (2008).
  4. Schurgers, L. J., Akbulut, A. C., Kaczor, D. M., Halder, M., Koenen, R. R., Kramann, R. Initiation and propagation of vascular calcification is regulated by a concert of platelet- and smooth muscle cell-derived extracellular vesicles. Frontiers in Cardiovascular Medicine. 5, 36 (2018).
  5. Jaminon, A., Reesink, K., Kroon, A., Schurgers, L. The role of vascular smooth muscle cells in arterial remodeling: focus on calcification-related processes. International Journal of Molecular Sciences. 20 (22), 5694 (2019).
  6. Mollet, N., et al. Coronary plaque burden in patients with stable and unstable coronary artery disease using multislice CT coronary angiography. La Radiologia Medica. 116 (8), 1174-1187 (2011).
  7. Galal, H., Rashid, T., Alghonaimy, W., Kamal, D. Detection of positively remodeled coronary artery lesions by multislice CT and its impact on cardiovascular future events. The Egyptian Heart Journal. 71 (1), 26 (2019).
  8. Benedek, T., Gyöngyösi, M., Benedek, I. Multislice computed tomographic coronary angiography for quantitative assessment of culprit lesions in acute coronary syndromes. The Canadian Journal of Cardiology. 29 (3), 364-371 (2013).
  9. Raggi, P. Cardiovascular calcification in end stage renal disease. Cardiovascular Disorders in Hemodialysis. 149, 272-278 (2005).
  10. Raggi, P. Coronary artery calcification predicts risk of CVD in patients with CKD. Nature Reviews Nephrology. 13 (6), 324-326 (2017).
  11. Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M., Shanahan, C. M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovascular Research. 114 (4), 590-600 (2018).
  12. Yahagi, K., et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology. 37 (2), 191-204 (2017).
  13. Harper, E., Forde, H., Davenport, C., Rochfort, K. D., Smith, D., Cummins, P. M. Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascular Pharmacology. 82, 30-40 (2016).
  14. Lacolley, P., Regnault, V., Segers, P., Laurent, S. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiological Reviews. 97 (4), 1555-1617 (2017).
  15. Pescatore, L. A., Gamarra, L. F., Liberman, M. Multifaceted mechanisms of vascular calcification in aging. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (7), 1307-1316 (2019).
  16. Herrmann, J., Babic, M., Tölle, M., vander Giet, M., Schuchardt, M. Research models for studying vascular calcification. International Journal of Molecular Sciences. 21 (6), 2204 (2020).
  17. Bowler, M. A., Merryman, W. D. In vitro models of aortic valve calcification: solidifying a system. Cardiovascular Pathology: The Official Journal of the Society for Cardiovascular Pathology. 24 (1), 1-10 (2015).
  18. Gitelman, H. J. An improved automated procedure for the determination of calcium in biological specimens. Analytical Biochemistry. 18 (3), 521-531 (1967).
  19. Furmanik, M., et al. Endoplasmic reticulum stress mediates vascular smooth muscle cell calcification via increased release of Grp78 (glucose-regulated protein, 78 kDa)-loaded extracellular vesicles. Arteriosclerosis, Thrombosis, and Vascular Biology. 41 (2), 898-914 (2021).
  20. Jaminon, A. M. G., et al. Development of the BioHybrid assay: combining primary human vascular smooth muscle cells and blood to measure vascular calcification propensity. Cells. 10 (8), 2097 (2021).
  21. Reynolds, J. L., et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. Journal of the American Society of Nephrology: JASN. 15 (11), 2857-2867 (2004).
  22. Wang, X. -. R., Zhang, J. -. J., Xu, X. -. X., Wu, Y. -. G. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Renal Failure. 41 (1), 244-256 (2019).
  23. Willems, B. A., et al. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Scientific Reports. 8 (1), 4961 (2018).
  24. Furmanik, M., et al. Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification. Circulation Research. 127 (7), 911-927 (2020).
  25. Virtanen, P., Isotupa, K. Staining properties of alizarin red S for growing bone in vitro. Acta Anatomica. 108 (2), 202-207 (1980).
  26. Yang, H., Curinga, G., Giachelli, C. M. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney International. 66 (6), 2293-2299 (2004).
  27. Pasch, A., et al. Nanoparticle-based test measures overall propensity for calcification in serum. Journal of the American Society of Nephrology: JASN. 23 (10), 1744-1752 (2012).
check_url/pt/64029?article_type=t

Play Video

Citar este artigo
Jaminon, A. M. G., Rapp, N., Akbulut, A. C., Dzhanaev, R., Reutelingsperger, C. P., Jahnen-Dechent, W., Schurgers, L. J. A Semi-Automated and Reproducible Biological-Based Method to Quantify Calcium Deposition In Vitro. J. Vis. Exp. (184), e64029, doi:10.3791/64029 (2022).

View Video