Summary

药物治疗后肿瘤聚集体内区域细胞密度的无损评估

Published: June 21, 2022
doi:

Summary

本方案开发了一种基于图像的技术,用于在3D肿瘤聚集体中快速,无破坏性和无标记的区域细胞密度和活力测量。研究结果揭示了细胞密度梯度,在发育中的聚集体中,核心区域的细胞密度高于外层,并且在用曲妥珠单抗处理的HER2 +聚集体中主要是外周细胞死亡。

Abstract

多细胞肿瘤球状体(MCTS)模型已被证明对癌症进展和药物发现的 体外 研究越来越有用。这些相对简单的无血管构建体模仿 体内 肿瘤的关键方面,例如3D结构和病理生理梯度。MCTSS模型可以提供对球体发育期间和药物响应的癌细胞行为的见解;然而,它们所需的尺寸极大地限制了用于非破坏性评估的工具。探索光学相干断层扫描结构成像和Imaris 3D分析软件,以快速,无损和无标记地测量MCTS中的区域细胞密度。该方法用于评估 4 天成熟期的 MCTS,以及临床上相关的抗 HER2 药物曲妥珠单抗的 5 天延长治疗期间。简而言之,AU565 HER2 +乳腺癌MCTS 是通过 液体覆盖物创建的,无论是否添加Matrigel(基底膜基质),以探索不同形态的聚集体(分别为较厚的盘状2.5D聚集体或扁平2D聚集体)。在成熟的MCTS中表征了外部区域,过渡区域和内核内的细胞密度,揭示了与外层相比,核心区域具有更高细胞密度的细胞密度梯度。基质添加重新分配了细胞密度并增强了这种梯度,降低了外区密度并增加了核心中的细胞压实度。在逐渐深的100μm区域内进行药物治疗后(0小时,24小时,5天)的细胞密度定量,以评估药物反应的潜在区域差异。到最后一个时间点,几乎所有的细胞死亡似乎都被限制在每个聚集体的外200μm,而聚集体中更深处的细胞似乎基本上不受影响,这表明药物反应的区域差异可能是由于药物渗透的限制。目前的方案提供了一种独特的技术来无损量化致密细胞组织内的区域细胞密度并对其进行纵向测量。

Introduction

研究人员已经在很大程度上转向台式3D培养体外系统来研究肿瘤进展的一些关键特征。这项研究的大部分是由多细胞肿瘤球状体(MCTS)和更复杂的类器官12的重新出现引起的。虽然这些模型是无血管的,但它们为概括体内发生的生理和病理过程提供了强大的工具345。特别是,中型模型(直径300-500μm)可以模拟关键的肿瘤特征,例如3D结构,病理生理梯度和由于核心缺氧引起的转移信号传导。有据可查的是,这些模型显示了血管化体内肿瘤中的特征性同心层,即增殖细胞的外层,衰老/静止细胞的过渡层以及核心缺氧的细胞36789.通过表征这些层内的细胞行为,在发育过程中和对药物的反应,可以从这些模型中获得独特的见解。然而,开发梯度所需的MCTS尺寸,使它们如此强大的体外模型所必需的,极大地限制了用于无损评估的工具。事实上,对MTCS进行非破坏性分析的最大挑战之一是量化细胞规模的细节。明场和相差显微镜通常用于无损评估3D MCTS的生长和发育。然而,这些模态仅限于2D投影,缺乏可视化这些模型的关键3D结构的能力10111213。关于细胞毒性和细胞增殖的信息通常通过荧光成像(即,光片显微镜、共聚焦显微镜)或离体免疫组织染色141516收集。虽然这些方法提供了有关组织结构、细胞密度和细胞功能的有价值的高分辨率信息,但它们通常需要样品制备,例如光学清除、固定/染色或嵌入,以防止纵向分析。

光学相干断层扫描(OCT)是一种非破坏性结构成像方式,有可能克服上述一些挑战。它具有蜂窝分辨率和足够宽的视野(高达10 mm x 10 mm),能够可视化整个多细胞聚集体171819。重要的是,由于所用光的可见性质,这种技术是完全非破坏性的,并且没有标签17。此外,样品可以在不需要样品制备的情况下 原位 成像,这样就可以直接从培养箱中取出样品,用OCT快速扫描(扫描持续时间约为5-10分钟),然后返回培养箱,从而实现纵向表征。最近出现了许多试图使用OCT来分析肿瘤球体行为的研究。在最令人兴奋的演示之一中,Huang等人使用OCT来无损检测大型肿瘤球体模型中的坏死核心,并指出活细胞和死细胞区域在光学衰减方面具有明显的差异,可用于无标记的生存能力监测20。类似地,Hari等人对用OCT成像的人类结肠癌(HCT116)球体进行了折射率(RI)测量,以研究样品21中缺氧的存在。他们的测量不足以进行直接推断,尽管他们确实在与坏死核心的部位相关(尽管不是大小)的位置观察到较低的RI,后来 通过 共聚焦显微镜识别出来。Abd El-Sadek等人使用OCT来可视化和量化乳腺癌肿瘤模型22的区域组织生存能力。他们报告了两种基于OCT的可视化组织动力学的方法,并显示这些指标的差异与显微镜识别的活/死细胞区域之间存在中等相关性。

我们发表的工作使用OCT建立在先前的文献的基础上,建立了一种定量的,非破坏性的方法,以在开发过程中测量MCTSs乳腺癌模型中的3D形态和细胞计数1023。使用Imaris 3D渲染图像分析软件来计算OCT体积扫描中成像的细胞大小的物体(即斑点)的数量,在MCTS中无损测量细胞计数,这些计数在统计学上与在聚合解离时 通过 血细胞计数器确定的细胞计数相似。然而,由于OCT的结构性质,细胞因坏死而死亡后仍然存在的细胞膜可能被错误地计为活细胞。此外,这种表征被扩展到无损跟踪单个聚集体内的细胞活力,并受到有希望成功的药物治疗方案10。重要的是,值得注意的是,我们的OCT-Imaris方法报告了类似的细胞活力,并且在解离时对这些样品进行了基准测试。这种非破坏性和无标记的细胞方法使细胞能够在3D构建体和密集聚集体中纵向计数,而不会牺牲构建/聚集体结构。

本工作报告了一种改进的方法,通过利用OCT-Imaris测量3D聚集体形态和细胞数量的能力,直接量化密集聚集体中的区域细胞密度。这种方法学上的进步提供了MCTS模型的特征同心层内细胞空间分布和增殖的更详细的图片。这种局部密度测量不是简单地计算总体平均细胞密度,而是可以揭示细胞密度梯度,例如与压实相关的梯度。这种区域评估也适用于用化疗药物治疗的聚集体,以评估区域药物反应,通过局部细胞密度的变化来衡量。OCT和高级成像分析方法的这种组合提供了区域细胞活力的定量,可用于根据哪些区域经历细胞密度降低来探索药物渗透。这是第一份非破坏性地量化区域细胞密度和活力以响应致密细胞组织内药物并纵向测量的报告。这种对整个MCTS的三维细胞密度和空间分布的表征可能有助于优化癌症治疗中的药物递送,并提高对癌症模型进展的理解。

Protocol

AU565(HER2+)和MDA-MB-231乳腺癌细胞系用于本研究(见 材料表)。 1. 制备肿瘤聚集体 使用罗斯威尔公园纪念研究所(RPMI)1640基础培养基(+)在L-谷氨酰胺中制备AU565(HER2 +)乳腺癌细胞生长培养基,并补充10%(v / v)胎牛血清和1%青霉素/链霉素(见 材料表)。 使用Dulbecco的改良鹰培养基(DMEM)制备MDA-MB-231三阴性乳腺癌细?…

Representative Results

在先前的出版物中,建立了一种使用OCT10对细胞聚集体内全局细胞密度进行非破坏性测量的方法。在本文中,该技术被扩展为评估发育中的细胞聚集体的区域细胞密度。图1显示了该扩展的示意图,其中可以通过观察小的(直径为100μm)的球形塞子(用图1B,C中的黄色圆圈表示)来评估细胞密度。MDA-MB-231肿瘤球体最初通过?…

Discussion

意义
多细胞肿瘤球体(MCTS)是用于研究肿瘤进展和药物筛选123的强大3D体外模型。推进这些相对简单的聚合模型的实用性在很大程度上依赖于其关键特征的表征,例如形态学和细胞密度,已知这些特征会影响肿瘤模型的进展和治疗反应。然而,它们所需的尺寸在评估这些特征时带来了挑战,特别是对…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了美国国立卫生研究院R01 BRG CA207725(MB / DTC)和NIH R01 CA233188(MB)的支持。我们要感谢AMC药房为这些实验提供的曲妥珠单抗。

Materials

96 well plates Greiner Bio-One  650970 CellStar Cell-Repellent Surface, https://shop.gbo.com/en/usa/products/bioscience/cell-culture-products/cellstar-cell-repellent-surface/
0.25% trypsin, 2.21 mM EDTA Corning 25-053-CI
AU565 breast cancer cells ATCC
Dulbecco's Modified Eagle's Medium Corning 10-013-CV
Fetal Bovine Serum ATCC 30-2020
FIJI software open-source (Fiji Is Just) ImageJ v2.1/1.5.3j Downloaded from https://imagej.net/software/fiji/
Hemocytometer Fisher Scientific 0267151B
Imaris image analysis software Bitplane Current version 9.8
L-glutamine Lonza 17-605E
Matrigel Corning 354263
MDA-MB-231 breast cancer cells ATCC
Microscope Zeiss Z1 AxioVision
Penicilin streptomycin Corning 30-0002CI
Plate centrifuge Eppendorf
RPMI medium 1640 Gibco 11875-085
Spectral Domain Optical Coherence Tomography ThorLabs TEL220C1
T75 cell culture flasks Greiner Bio-One  658175
Trastuzumab Remnant clinical samples of Trastuzumab were used in this study, generously gifted by the Albany Medical College Pharmacy. 

Referências

  1. Sutherland, R., JA, M., Inch, W. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. Journal of the National Cancer Institute. 46 (1), 113-120 (1971).
  2. Sachs, N., et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172 (1-2), 373-386 (2018).
  3. Nagelkerke, A., Bussink, J., Sweep, F. C. G. J., Span, P. N. Generation of multicellular tumor spheroids of breast cancer cells: How to go three-dimensional. Analytical Biochemistry. 437 (1), 17-19 (2013).
  4. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F., Ebner, R. The use of 3-D cultures for high-throughput screening: The multicellular spheroid model. Journal of Biomolecular Screening. 9 (4), 273-285 (2004).
  5. Hirschhaeuser, F., et al. Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology. 148 (1), 3-15 (2010).
  6. Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., Freyer, J. P. A multiscale model for avascular tumor growth. Biophysical Journal. 89 (6), 3884-3894 (2005).
  7. Freyei, J. P., Sutherland, R. M. Regulation of growth saturation and development of necrosisin EMT6/R0 multicellular spheroids by the glucose and oxygen supply. Pesquisa do Câncer. 46 (7), 3504-3512 (1986).
  8. Desoize, B., Jardillier, J. C. Multicellular resistance: a paradigm for clinical resistance. Critical Reviews in Oncology Hematology. 36 (2-3), 193-207 (2000).
  9. Mellor, H. R., Ferguson, D. J. P., Callaghan, R. A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs. British Journal of Cancer. 93 (3), 302-309 (2005).
  10. Roberge, C. L., et al. Non-destructive tumor aggregate morphology and viability quantification at cellular resolution, during development and in response to drug. Acta Biomaterialia. 117, 322-334 (2020).
  11. Piccinini, F., Tesei, A., Bevilacqua, A. Single-image based methods used for non-invasive volume estimation of cancer spheroids a practical assessing approach based on entry-level equipment. Computer Methods and Programs in Biomedicine. 135, 51-60 (2016).
  12. Imamura, Y., et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncology Reports. 33 (4), 1837-1843 (2015).
  13. Song, Y., et al. Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research. 37 (1), 1-13 (2018).
  14. LaBarbera, D. V., Reid, B. G., Yoo, B. H. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opinion on Drug Discovery. 7 (9), 819-830 (2012).
  15. Hakanson, M., Textor, M., Charnley, M. Engineered 3D environments to elucidate the effect of environmental parameters on drug response in cancer. Integrative Biology. 3 (1), 31-38 (2011).
  16. Pickl, M., Ries, C. H. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene. 28 (3), 461-468 (2009).
  17. Huang, D., et al. Optical coherence tomography HHS public access. Science. 254 (5035), 1178-1181 (1991).
  18. Zhong, H. Q., et al. Enhancement of permeability of glycerol with ultrasound in human normal and cancer breast tissues in vitro using optical coherence tomography. Laser Physics Letters. 7 (5), 388-395 (2010).
  19. Fujimoto, J., Swanson, E. The development, commercialization, and impact of optical coherence tomography. Investigative Ophthalmology & Visual Science. 57 (9), (2016).
  20. Huang, Y., et al. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. Pesquisa do Câncer. 77 (21), 6011-6020 (2017).
  21. Hari, N., Patel, P., Ross, J., Hicks, K., Vanholsbeeck, F. Optical coherence tomography complements confocal microscopy for investigation of multicellular tumour spheroids. Scientific Reports. 9 (1), 1-11 (2019).
  22. El-Sadek, I. A., et al. Three-dimensional dynamics optical coherence tomography for tumor spheroid evaluation. Biomedical Optics Express. 12 (11), 6844 (2021).
  23. Kingsley, D. M., et al. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomateralia. 95, 357-370 (2019).
  24. Absher, M. Hemocytometer counting. Tissue Culture. , 395-397 (1973).
  25. Roberge, C. L., Rudkouskaya, A., Barroso, M., Corr, D. T. Longitudinal, label-free assessment of cell density and viability in multicellular tumor spheroids via optical coherence tomography. Summer Biomechanics, Bioengineering, and Biotransport Conference. , (2020).
  26. Bellotti, C., Duchi, S., Bevilacqua, A., Lucarelli, E., Piccinini, F. Long term morphological characterization of mesenchymal stromal cells 3D spheroids built with a rapid method based on entry-level equipment. Cytotechnology. 68 (6), 2479-2490 (2016).
  27. Noto, A., et al. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death & Disease. 4 (12), 947 (2013).
  28. Riffle, S., Hegde, R. S. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. Journal of Experimental & Clinical Cancer Research. 36, 102 (2017).
  29. Wilson, W. R., Hay, M. P. Targeting hypoxia in cancer therapy. Nature Reviews Cancer. 11, 393-410 (2011).
  30. Grimes, D. R., Kelly, C., Bloch, K., Partridge, M. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. Journal of the Royal Society Interface. 11 (92), 20131124 (2014).
  31. Nath, S., Devi, G. R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology & Therapeutics. 163, 94-108 (2016).
  32. Pozzi, S., et al. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development. Advanced Drug Delivery Reviews. 175, 113760 (2021).
  33. . High throughput screening format identifies synthetic mimics of matrigel for tubulogenesis screening Available from: https://abstracts.biomaterials.org/data/papers/2015/abstracts/547.pdf (2015)
  34. Duchnowska, R., Szczylik, C. Central nervous system metastases in breast cancer patients administered trastuzumab. Cancer Treatment Reviews. 31 (4), 312-318 (2005).
  35. Zazo, S., et al. Generation, characterization, and maintenance of trastuzumab-resistant HER2+ breast cancer cell lines. American Journal of Cancer Research. 6 (11), 2661-2678 (2016).
check_url/pt/64030?article_type=t

Play Video

Citar este artigo
Roberge, C. L., Wang, L., Barroso, M., Corr, D. T. Non-Destructive Evaluation of Regional Cell Density Within Tumor Aggregates Following Drug Treatment. J. Vis. Exp. (184), e64030, doi:10.3791/64030 (2022).

View Video