Summary

使用重组酶聚合酶扩增结合CRISPR-Cas12a进行现场部署的亚洲 自由念珠 菌检测

Published: December 23, 2022
doi:

Summary

本工作建立了一种基于重组酶聚合酶扩增结合CRISPR-Cas12a的快速、灵敏、便携的亚洲 自由念珠 菌检测方法。

Abstract

柑橘种植者早期发现亚洲 自由念珠 菌(CLas)有助于早期干预并防止疾病传播。本文介绍了一种用于快速便携的黄龙冰(HLB)诊断的简单方法,该方法结合了重组酶聚合酶扩增和荧光报告基因,该方法利用成簇规则间隔短回文重复序列/CRISPR相关12a(CRISPR-Cas12a)系统的核酸酶活性。该技术的灵敏度远高于PCR。此外,当使用叶样品时,该方法显示出与qPCR相似的结果。与传统的CLas检测方法相比,这里介绍的检测方法可以在90 min内完成,并且在不需要使用PCR机的等温条件下工作。此外,结果可以通过现场的手持式荧光检测设备可视化。

Introduction

黄龙病(HLB)是全球最成问题的柑橘病害之一1。HLB 由韧皮部定植和挑剔细菌 Liberibacter 属引起,包括亚洲自由念珠 (CLas)、非洲乳杆菌和美洲乳杆菌 2在中国和美国,最普遍的HLB相关物种是CLas,它通过亚洲柑橘木虱(Diaphorina citri)或通过嫁接传播3。柑橘树被CLas感染后,生长下降直至死亡2。柑橘叶感染CLas的常见症状是斑点斑驳,绿岛(小圆形深绿色点),较厚和革质叶子上凸起的软木脉,以及芽不均匀的黄芽2。此外,感染CLas的水果显得小而不平衡2

由于没有柑橘品种对HLB有抗性,也没有治疗HLB的方法,因此预防HLB需要检疫和分离CLas阳性的柑橘树23。因此,早期发现对于监测和检疫至关重要,以防止CLas的传播并最大限度地减少经济损失3。此外,由于感染早期植物中CLas的滴度较低,因此需要进行灵敏的CLas检测3。在中国,CLas检测通常由某些经过认证的测试中心进行。但是,检测过程通常至少需要1周,并且检测费用昂贵。因此,为了帮助监测HLB发病率

已经应用了各种技术来诊断HLB456789。聚合酶链反应 (PCR) 和定量 PCR (qPCR) 因其高灵敏度和特异性而成为最常用的 CLas 检测工具45。然而,这些技术严重依赖昂贵的仪器和高技能人员。此外,几种等温扩增方法,如环介导等温扩增(LAMP),由于其简单、快速和低成本,已被开发为传统PCR方法的有吸引力的替代方案8,910然而,由于非特异性扩增信号,应用它们来准确检测CLas具有挑战性,这可能会导致假阳性结果。

RNA引导的CRISPR/Cas(成簇规则间隔短回文重复序列/CRISPR相关)基于核酸内切酶的核酸检测因其高灵敏度、特异性和可靠性而发展成为下一代分子诊断技术11121314这些 CRISPR/Cas诊断技术依靠Cas蛋白的附带核酸酶活性来切割用荧光报告基因和寡核苷酸两端的荧光淬灭剂修饰的单链DNA(ssDNA),以及用于捕获释放的荧光报告基因的荧光检测装置1112.由CRISPR RNA(crRNA)靶标双链体激活的几种Cas效应子的核酸酶活性可以不加选择地切割周围的非靶点ssDNA11。CRISPR-Cas12a(也称为Cpf 1)是一种2类V-A CRISPR / Cas系统,与Cas9相比具有多种优势,例如更低的失配耐受性和更高的特异性13。Cas12a/crRNA系统已被应用于人类病原体和植物病原体1415161718的核酸的灵敏和特异性检测。因此,利用Cas12a/crRNA系统应能够准确灵敏地检测CLas的核酸。

单独的Cas12a在理论上不足以检测低水平的核酸。因此,为了提高其检测灵敏度,CRISPR-Cas12a检测通常与等温扩增步骤1415相结合。重组酶聚合酶扩增 (RPA) 可在 37 °C 至 42 °C 的温度范围内实现灵敏、快速的等温 DNA 扩增19

最近设计了一种名为DETECTR(DNA核酸内切酶靶向CRISPR 反式 报告基因)的检测平台,该平台将Cas12a的DNA酶活性与RPA和荧光读数相结合12 ,并已被证明可以检测具有更高灵敏度的核酸20。此外,阳性样品发出的荧光信号可以通过现场的手持式荧光检测设备进行观察。

由于我们用RPA扩增DNA,设计了针对CLas 21特异性的五拷贝nrdB核糖核苷酸还原酶β-亚基)基因的crRNA,并采用了Cas12a蛋白的DNase活性,因此我们称之为CLas检测方法CLas-DETECTR。与现有的CLas检测方法相比,CLas-DETECTR具有快速、准确、灵敏、可部署的特点。

Protocol

1. CLas-DETECTR的构建 注意:CLas-DETECTR的构建是一个四步过程:溶液制备,柑橘总DNA分离,等温DNA扩增和结果可视化。CLas-DETECTR测定的示意图如图 1A所示。 溶液制备制备缓冲液A:20mM NaOH在6%PEG 200中。对于 100 mL,将 113 mg NaOH 和 6 g PEG 200 加入瓶中的 80 mL H2O 中。将瓶子在60°C的水浴中孵育,直到所有PEG 200溶解。然后,将 H2O 加入?…

Representative Results

在这里,我们描述了一个便携式平台CLas-DETECTR,它结合了RPA和CRISPR-Cas12a系统,以在现场诊断HLB。CLas-DETECTR 的模式如图 1A 所示。 当来自HLB感染和未感染HLB的Newhall树的叶样品(图1B)通过PCR确认CLas的存在(图1C)时,在HLB感染的样品中观察到绿色荧光信号,但在HLB未感染的样品和阴性对照中没有(图1D)。<stron…

Discussion

本研究提出了一种快速便携的CLas检测方法,称为CLas-DETECTR,该方法结合了RPA和CRISPR-Cas12a系统。工作流程如图 1 所示。CLas-DETECTR 检测 CLas 具有特异性和灵敏度(图 2图 3)。此外,使用纽霍尔叶样品,CLas-DETECTR以与qPCR相同的灵敏度检测CLas(图4)。值得注意的是,检测结果可以通过独立于实验…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家重点研发计划(2021YFD1400805)、江西省重大科技研发计划(20194ABC28007)、江西省教育厅项目(GJJ201449)、江西省现代农业科学研究协同创新(JXXTCX2015002(3+2)-003)的资助。

Materials

AxyPrep DNA Gel Extraction Kit Corning 09319KE1 China
Bacterial Genomic DNA Extraction Kit Solarbio D1600 China
EnGen LbCas12a  TOLOBIO 32104-01 China
Ex Taq Version 2.0 plus dye TaKaRa RR902A China
Handheld fluorescent detection device  LUYOR 3415RG China
Hole puncher  Deli 114 China
Magnesium acetate, MgOAc TwistDx TABAS03KIT UK
NaOH SCR 10019718 China
NEB buffer 3.1  NEB B7203 USA
PCR strip tubes LABSELECT PST-0208-FT-C China
PEG 200  Sigma P3015 USA
PrimeSTAR Max DNA Polymeras TaKaRa R045A China
Quick-Load Purple 1 kb Plus DNA Ladder  New England Biolabs N0550S USA
TB Green Premix Ex Taq II (Tli RNaseH Plus) TaKaRa RR820B China
TwistAmp Basic TwistDx TABAS03KIT UK

Referências

  1. Ma, W. X., et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nature Communications. 13 (1), 529 (2022).
  2. Bové, J. M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology. 88 (1), 7-37 (2006).
  3. Wang, N., et al. The Candidatus Liberibacter-host interface: Insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology. 55, 451-482 (2017).
  4. Kim, J. S., Wang, N. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Research Notes. 2, 37 (2009).
  5. Maheshwari, Y., Selvaraj, V., Godfrey, K., Hajeri, S., Yokomi, R. Multiplex detection of "Candidatus Liberibacter asiaticus" and Spiroplasma citri by qPCR and droplet digital PCR. PLoS One. 16 (3), e0242392 (2021).
  6. Deng, X., Zhou, G., Li, H., Chen, J., Civerolo, E. L. Nested-PCR detection and sequence confirmation of ‘Candidatus Liberibacter asiaticus’ from Murraya paniculata in Guandong, China. Plant Disease. 91 (8), 1051 (2007).
  7. Ding, F., Duan, Y., Yuan, Q., Shao, J., Hartung, J. S. Serological detection of ‘Candidatus Liberibacter asiaticus’ in citrus, and identification by GeLC-MS/MS of a chaperone protein responding to cellular pathogens. Scientific Reports. 6, 29272 (2016).
  8. Choi, C. W., Hyun, J. W., Hwang, R. Y., Powell, C. A. Loop-mediated isothermal amplification assay for detection of Candidatus Liberibacter asiaticus, a causal agent of citrus Huanglongbing. The Plant Pathology Journal. 34 (6), 499-505 (2018).
  9. Ghosh, D. K., et al. Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of "Candidatus Liberibacter asiaticus". PLoS One. 13 (12), e0208530 (2018).
  10. Ravindran, A., Levy, J., Pierson, E., Gross, D. C. Development of a loop-mediated isothermal amplification procedure as a sensitive and rapid method for detection of ‘Candidatus Liberibacter solanacearum’ in potatoes and psyllids. Phytopathology. 102 (9), 899-907 (2012).
  11. Chertow, D. S. Next-generation diagnostics with CRISPR. Science. 360 (6387), 381-382 (2018).
  12. Chen, J. S., et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360 (6387), 436-439 (2018).
  13. Zetsche, B., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163 (3), 759-771 (2015).
  14. Gootenberg, J. S., et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360 (6387), 439-444 (2018).
  15. Ding, X., et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nature Communications. 11 (1), 4711 (2020).
  16. Qian, W., et al. Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics. Virus Research. 305, 198568 (2021).
  17. Marques, M. C., et al. Diagnostics of infections produced by the plant viruses TMV, TEV, and PVX with CRISPR-Cas12 and CRISPR-Cas13. ACS Synthetic Biology. 11 (7), 2384-2393 (2022).
  18. Lu, X., et al. A rapid, equipment-free method for detecting Phytophthora infestans in the field using a lateral flow strip-based recombinase polymerase amplification assay. Plant Disease. 104 (11), 2774-2778 (2020).
  19. Lobato, I. M., O’Sullivan, C. K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends in Analytical Chemistry. 98, 19-35 (2018).
  20. Liang, M., et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nature Communications. 10 (1), 3672 (2019).
  21. Zheng, Z., et al. Unusual five copies and dual forms of nrdB in "Candidatus Liberibacter asiaticus": Biological implications and PCR detection application. Scientific Reports. 6, 39020 (2016).
  22. Chomczynski, P., Rymaszewski, M. Alkaline polyethylene glycol-based method for direct PCR from bacteria, eukaryotic tissue samples, and whole blood. BioTechniques. 40 (4), 454-458 (2006).
  23. Yang, Y. G., Kim, J. Y., Soh, M. S., Kim, D. S. A simple and rapid gene amplification from Arabidopsis leaves using Any Direct system. Journal of Biochemistry and Molecular Biology. 40 (3), 444-447 (2007).
  24. Long, Y., et al. A fluorescent reporter-based evaluation assay for antibacterial components against Xanthomonas citri subsp. citri. Frontiers in Microbiology. 13, 864963 (2022).
  25. Wheatley, M. S., Duan, Y. P., Yang, Y. Highly sensitive and rapid detection of citrus Huanglongbing pathogen (‘Candidatus Liberibacter asiaticus’) using Cas12a-based methods. Phytopathology. 111 (12), 2375-2382 (2021).
check_url/pt/64070?article_type=t

Play Video

Citar este artigo
Li, M., Qin, H., Long, Y., Cheng, M., Li, L., Huang, A., Wang, N., Duan, S. Field-Deployable Candidatus Liberibacter asiaticus Detection Using Recombinase Polymerase Amplification Combined with CRISPR-Cas12a. J. Vis. Exp. (190), e64070, doi:10.3791/64070 (2022).

View Video