Summary

Identifikation af caspaser og deres motiver, der spalter proteiner under influenza A-virusinfektion

Published: July 21, 2022
doi:

Summary

Influenza A-virus (IAV) infektion aktiverer caspaserne, der spalter vært og virale proteiner, som igen har pro- og antivirale funktioner. Ved at anvende hæmmere, RNA-interferens, stedrettet mutagenese og western blotting og RT-qPCR-teknikker blev caspaser i inficerede pattedyrceller, der spalter værtscortactin og histondeacetylaser, identificeret.

Abstract

Caspases, en familie af cysteinproteaser, orkestrerer programmeret celledød som reaktion på forskellige stimuli, herunder mikrobielle infektioner. Oprindeligt beskrevet at forekomme ved apoptose, er programmeret celledød nu kendt for at omfatte tre sammenkoblede veje: pyroptose, apoptose og nekroptose, sammen opfundet som en proces, PANoptose. Indflydelse En virus (IAV) infektion inducerer PANoptose i pattedyrceller ved at inducere aktivering af forskellige caspaser, som igen spalter forskellige værts- såvel som virale proteiner, hvilket fører til processer som aktivering af værtsmedfødt antiviralt respons eller nedbrydning af antagonistiske værtsproteiner. I denne henseende er caspase 3-medieret spaltning af værtscortactin, histon deacetylase 4 (HDAC4) og histon deacetylase 6 (HDAC6) blevet opdaget i både dyre- og humane epitelceller som reaktion på IAV-infektionen. For at demonstrere dette blev hæmmere, RNA-interferens og stedrettet mutagenese anvendt, og efterfølgende blev spaltningen eller modstanden mod spaltning og genopretning af cortactin, HDAC4 og HDAC6 polypeptider målt ved western blotting. Disse metoder danner sammen med RT-qPCR en enkel, men effektiv strategi til at identificere værten såvel som virale proteiner, der gennemgår caspasemedieret spaltning under en infektion med IAV eller andre humane og animalske vira. Den foreliggende protokol uddyber de repræsentative resultater af denne strategi, og måderne til at gøre den mere effektiv diskuteres også.

Introduction

Influenza A-virus (IAV) er det prototypiske medlem af Orthomyxoviridae-familien og er kendt for at forårsage globale epidemier og uforudsigelige pandemier. IAV forårsager human respiratorisk sygdom, influenza, almindeligvis kendt som “influenza”. Influenza er en akut sygdom, der resulterer i induktion af værtspro- og antiinflammatoriske medfødte immunresponser og død af epitelceller i det menneskelige luftveje. Begge processer styres af et fænomen kaldet programmeret celledød1. Signaleringen for programmeret celledød induceres, så snart forskellige patogengenkendelsesreceptorer registrerer de indkommende viruspartikler i værtsceller. Dette fører til programmering af døde af inficerede celler og signalering til de nærliggende sunde celler ved hjælp af tre sammenkoblede veje kaldet pyroptose, apoptose og nekroptose – for nylig opfundet som en proces, PANoptosis1.

PANoptose involverer proteolytisk behandling af mange værts- og virale proteiner fra induktion til udførelse. En sådan behandling af proteiner ledes primært af en familie af cysteinproteaser kaldet caspaser 1,2. Op til 18 caspaser (fra caspase 1 til caspase 18) er kendt3. De fleste caspaser udtrykkes som pro-caspaser og aktiveres ved at gennemgå deres egen proteolytiske behandling enten ved autokatalyse eller andre caspaser4 som reaktion på en stimulus som en virusinfektion. PANoptose af IAV-inficerede celler blev anset for at være en værtsforsvarsmekanisme, men IAV har udviklet måder at undgå og udnytte den til at lette dens replikation 1,2,5,6. En af dem er at modvirke værtsfaktorerne via caspase-medieret spaltning eller nedbrydning, der enten i sagens natur er antivirale eller forstyrrer et af trinene i IAV-livscyklussen. Til dette formål er værtsfaktorer, cortactin, HDAC4 og HDAC6 blevet opdaget at gennemgå caspase-medieret spaltning eller nedbrydning i IAV-inficerede epitelceller 7,8,9. HDAC4 og HDAC6 er anti-IAV faktorer 8,10, og cortactin interfererer med IAV replikation på et senere stadium af infektion, potentielt under viral samling og spirende 11.

Derudover aktiveres også forskellige caspaser, som igen spalter flere proteiner for at aktivere værtsinflammatorisk respons under IAV-infektion 1,2. Desuden gennemgår nukleoprotein (NP), ionkanal M2-protein af IAV 12,13,14 og forskellige proteiner fra andre vira 3,15,16 også caspasemedieret spaltning under infektion, hvilket påvirker viral patogenese. Derfor er der et kontinuerligt behov for at studere caspase-medieret spaltning eller nedbrydning af værts- og virale proteiner under IAV og andre virusinfektioner for at forstå det molekylære grundlag for viral patogenese. Heri præsenteres metoderne for at (1) vurdere spaltningen eller nedbrydningen af sådanne proteiner ved hjælp af caspaser, (2) identificere disse caspaser og (3) lokalisere spaltningsstederne.

Protocol

Lovgivningsmæssige godkendelser blev opnået fra University of Otago Institutional Biological Safety Committee til at arbejde med IAV og pattedyrceller. Madin-Darby Canine Kidney (MDCK) eller humane lunge alveolære epitel A549 celler og IAV H1N1 undertyper blev anvendt til denne undersøgelse. IAV blev dyrket i hønseæg, som beskrevet andetsteds17. Sterile og aseptiske tilstande blev brugt til at arbejde med pattedyrceller, og et biosikkerhedsniveau 2 (eller fysisk indeslutning 2) anlæg og kla…

Representative Results

Behandling med caspase 3-hæmmerDet er blevet opdaget, at værtscortactin, HDAC4 og HDAC6 polypeptider gennemgår nedbrydning som reaktion på IAV-infektion i både hunde (MDCK) og humane (A549, NHBE) celler 7,8,9. Ved at bruge ovenstående metoder blev det afdækket, at IAV-inducerede værtscaspaser, især caspase 3, forårsager deres nedbrydning 7,8,9</s…

Discussion

Det er fastslået, at vira skræddersyr værtsfaktorer og veje til deres fordel. Til gengæld modstår værtscellerne det ved at anvende forskellige strategier. En af disse strategier er PANoptose, som værtsceller bruger som en antiviral strategi mod virusinfektioner. Imidlertid har vira som IAV udviklet deres egne strategier til at imødegå PANoptose og udnytte det til deres fordel 1,3,6. Dette samspil involverer spaltning af…

Declarações

The authors have nothing to disclose.

Acknowledgements

Forfatteren anerkender Jennifer Tipper, Bilan Li, Jesse vanWestrienen, Kevin Harrod, Da-Yuan Chen, Farjana Ahmed, Sonya Mros, Kenneth Yamada, Richard Webby, BEI Resources (NIAID), Health Research Council of New Zealand, Maurice og Phyllis Paykel Trust (New Zealand), HS og J.C. Anderson Trust (Dunedin) og Institut for Mikrobiologi og Immunologi og School of Biomedical Sciences (University of Otago).

Materials

A549 cells ATCC CRM-CCL-185 Human, epithelial, lung
Ammonium chloride Sigma-Aldrich A9434
Caspase 3 Inhibitor Sigma-Aldrich 264156-M Also known as 'InSolution Caspase-3 Inhibitor II – Calbiochem'
cOmplete, Mini Protease Inhibitor Cocktail Roche 11836153001
Goat anti-NP antibody Gift from Richard Webby (St Jude Children’s Research Hospital, Memphis, USA) to MH
Lipofectamine 2000 Transfection Reagent ThermoFisher Scientific 31985062
Lipofectamine RNAiMAX Transfection Reagent ThermoFisher Scientific 13778150
MDCK cells ATCC CCL-34 Dog, epithelial, kidney
MG132 Sigma-Aldrich M7449
Minimum Essential Medium (MEM) ThermoFisher Scientific 11095080 Add L-glutamine, antibiotics or other supplements as required
MISSION siRNA Universal Negative Control #1 Sigma-Aldrich SIC001
Odyssey Fc imager with Image Studio Lite software 5.2  LI-COR Odyssey Fc has been replaced with Odyssey XF and Image Studio Lite software has been replaced with Empiria Studio software.
Pierce BCA Protein Assay Kit ThermoFisher Scientific 23225
Plasmid expressing human cortactin-GFP fusion  Addgene 50728 Gift from Kenneth Yamada to Addgene
Pre-designed small interferring RNA (siRNA) to caspase 3 Sigma-Aldrich NM_004346 siRNA ID: SASI_Hs01_00139105
Pre-designed small interferring RNA to caspase 6 Sigma-Aldrich NM_001226 siRNA ID: SASI_Hs01_00019062
Pre-designed small interferring RNA to caspase 7 Sigma-Aldrich NM_001227 siRNA ID: SASI_Hs01_00128361
Pre-designed SYBR Green RT-qPCR Primer pairs Sigma-Aldrich KSPQ12012 Primer Pair IDs: H_CASP3_1; H_CASP6_1; H_CASP7_1
Protran Premium nitrocellulose membrane Cytiva (Fomerly GE Healthcare) 10600003
Rabbit anti-actin antibody Abcam ab8227
Rabbit anti-cortactin antibody Cell Signaling 3502
Rabbit anti-GFP antibody Takara 632592
SeeBlue Pre-stained Protein Standard ThermoFisher Scientific LC5625
Transfection medium, Opti-MEM ThermoFisher Scientific 11668019
Tris-HCl, NaCl, SDS, Sodium Deoxycholate, Triton X-100 Merck
Trypsin, TPCK-Treated Sigma-Aldrich 4370285

Referências

  1. Place, D. E., Lee, S., Kanneganti, T. -. D. PANoptosis in microbial infection. Current Opinion in Microbiology. 59, 42-49 (2021).
  2. Zheng, M., Kanneganti, T. -. D. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunological Reviews. 297 (1), 26-38 (2020).
  3. Connolly, P. F., Fearnhead, H. O. Viral hijacking of host caspases: An emerging category of pathogen-host interactions. Cell Death & Differentiation. 24 (8), 1401-1410 (2017).
  4. Julien, O., Wells, J. A. Caspases and their substrates. Cell Death & Differentiation. 24 (8), 1380-1389 (2017).
  5. Balachandran, S., Rall, G. F., Gack, M. U. Benefits and perils of necroptosis in influenza virus infection. Journal of Virology. 94 (9), 01101-01119 (2020).
  6. Ampomah, P. B., Lim, L. H. K. Influenza A virus-induced apoptosis and virus propagation. Apoptosis. 25 (1-2), 1-11 (2020).
  7. Chen, D. Y., Husain, M. Caspase-mediated degradation of host cortactin that promotes influenza A virus infection in epithelial cells. Virology. 497, 146-156 (2016).
  8. Galvin, H. D., Husain, M. Influenza A virus-induced host caspase and viral PA-X antagonize the antiviral host factor, histone deacetylase 4. Journal of Biological Chemistry. 294 (52), 20207-20221 (2019).
  9. Husain, M., Harrod, K. S. Influenza A virus-induced caspase-3 cleaves the histone deacetylase 6 in infected epithelial cells. FEBS Letters. 583 (15), 2517-2520 (2009).
  10. Husain, M., Cheung, C. Y. Histone deacetylase 6 inhibits influenza A virus release by downregulating the trafficking of viral components to the plasma membrane via its substrate, acetylated microtubules. Journal of Virology. 88 (19), 11229-11239 (2014).
  11. Chen, D. Y., Husain, M. Caspase-mediated cleavage of human cortactin during influenza A virus infection occurs in its actin-binding domains and is associated with released virus titres. Viruses. 12 (1), 87 (2020).
  12. Zhirnov, O. P., Syrtzev, V. V. Influenza virus pathogenicity is determined by caspase cleavage motifs located in the viral proteins. Journal of Molecular and Genetic Medicine. 3 (1), 124-132 (2009).
  13. Zhirnov, O. P., Klenk, H. -. D. Alterations in caspase cleavage motifs of NP and M2 proteins attenuate virulence of a highly pathogenic avian influenza virus. Virology. 394 (1), 57-63 (2009).
  14. Zhirnov, O. P., Konakova, T. E., Garten, W., Klenk, H. Caspase-dependent N-terminal cleavage of influenza virus nucleocapsid protein in infected cells. Journal of Virology. 73 (12), 10158-10163 (1999).
  15. Robinson, B. A., Van Winkle, J. A., McCune, B. T., Peters, A. M., Nice, T. J. Caspase-mediated cleavage of murine norovirus NS1/2 potentiates apoptosis and is required for persistent infection of intestinal epithelial cells. PLOS Pathogens. 15 (7), 1007940 (2019).
  16. Richard, A., Tulasne, D. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis. Cell Death & Disease. 3 (3), 277 (2012).
  17. Brauer, R., Chen, P. Influenza virus propagation in embryonated chicken eggs. Journal of Visualized Experiments. (97), e52421 (2015).
  18. Lüthi, A. U., Martin, S. J. The CASBAH: A searchable database of caspase substrates. Cell Death & Differentiation. 14 (4), 641-650 (2007).
  19. Kumar, S., van Raam, B. J., Salvesen, G. S., Cieplak, P. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates. PLoS One. 9 (10), 110539 (2014).
  20. Igarashi, Y., et al. CutDB: A proteolytic event database. Nucleic Acids Research. 35 (Database issue). 35, 546-549 (2007).
  21. Crawford, E. D., et al. The DegraBase: A database of proteolysis in healthy and apoptotic human cells. Molecular & Cellular Proteomics. 12 (3), 813-824 (2013).
  22. Rawlings, N. D., Tolle, D. P., Barrett, A. J. MEROPS: The peptidase database. Nucleic Acids Research. 32, 160-164 (2004).
  23. Lange, P. F., Overall, C. M. TopFIND, a knowledgebase linking protein termini with function. Nature Methods. 8 (9), 703-704 (2011).
  24. Fortelny, N., Yang, S., Pavlidis, P., Lange, P. F., Overall, C. M. Proteome TopFIND 3.0 with TopFINDer and PathFINDer: Database and analysis tools for the association of protein termini to pre- and post-translational events. Nucleic Acids Research. 43, 290-297 (2015).
check_url/pt/64189?article_type=t

Play Video

Citar este artigo
Husain, M. Identifying Caspases and their Motifs that Cleave Proteins During Influenza A Virus Infection. J. Vis. Exp. (185), e64189, doi:10.3791/64189 (2022).

View Video