Summary

荧光RNA适配体 外和细胞 开启动力学的测定

Published: August 09, 2022
doi:

Summary

该协议提供了两种确定荧光RNA适配体菠菜2和西兰花动力学的方法。第一种方法描述了如何使用酶标仪 在体外 测量荧光适配体动力学,而第二种方法详细介绍了通过流式细胞术测量细胞中荧光适配体动力学。

Abstract

荧光RNA适配体已被应用于活细胞中,以标记和可视化RNA,报告基因表达,并激活荧光生物传感器,以检测代谢物和信号分子的水平。为了研究每个系统中的动态变化,需要获得实时测量,但测量的准确性取决于荧光反应的动力学比采样频率快。在这里,我们描述了分别使用配备样品进样器和流式细胞仪的酶标仪来确定荧光RNA适配体的体外和细胞开启动力学的方法。我们表明,Spinach2和西兰花适配体荧光活化的体外动力学可以建模为两相反合反应,并且具有不同的快速相速率常数0.56 s-1和0.35 s-1此外,我们表明,大肠杆菌中Spinach2荧光激活的细胞动力学仍然足够快,可以在分钟时间尺度上实现准确的采样频率。这些分析荧光活化动力学的方法适用于已开发的其他荧光RNA适配体。

Introduction

荧光反应是产生荧光信号的化学反应。荧光RNA适配体通常通过结合小分子染料来提高其荧光量子产率来执行此功能(图1A1。已经开发了不同的荧光RNA适配体系统,由特定的RNA适配体序列和相应的染料配体1组成。荧光RNA适配体已作为荧光标签附加到RNA转录本中,可实现mRNA和非编码RNA234的活细胞成像。它们也被放置在启动子序列之后作为基因表达的荧光报告基因,类似于使用绿色荧光蛋白(GFP)作为报告基因,只是报告功能在RNA水平56。最后,荧光RNA适配体已被掺入基于RNA的荧光生物传感器中,其设计用于响应特定的小分子触发荧光反应。基于RNA的荧光生物传感器已被开发用于各种非荧光代谢物和信号分子的活细胞成像7,891011

人们越来越关注荧光RNA适配体的开发,以可视化RNA定位,基因表达和小分子信号的动态变化。对于这些应用中的每一个,都需要获得实时测量,但测量的准确性取决于荧光反应的动力学是否快于采样频率。在这里,我们描述了使用配备样品进样器的酶标仪确定荧光RNA适配体Spinach2 12和Broccoli13体外动力学的方法,并使用流式细胞仪确定在大肠杆菌中表达的Spinach2的细胞开启动力学的方法。之所以选择这两种RNA适配体,是因为它们已被应用于研究RNA定位234,它们已被用于报告56和生物传感器789,10,11并且相应的染料配体(DFHBI或DFHBI-1T)已上市。表141314给出了文献中确定的它们的体外特性的摘要,这为方案开发提供了信息(例如使用的波长和染料浓度)。这些结果表明,受RNA适配体影响的荧光反应是快速的,不应妨碍所需细胞生物学应用的准确测量。

Protocol

1. 体外 动力学实验 通过PCR制备DNA模板设置PCR反应:要制备PCR反应,请将以下试剂合并到薄壁PCR管中:33 μL 双蒸水 (ddH2O)10 μL 5x 缓冲液,用于高保真 DNA 聚合酶5 μL 脱氧核糖核苷三磷酸 (dNTP) 各 2 mM0.5 μL 40 μM 正向引物0.5 μL 40 μM 反向引物0.5 μL (10-100 ng) DNA 模板(仅适用于菠菜2 PCR;西兰花底漆重叠)0.5 μL 高保真 DNA 聚合酶(最?…

Representative Results

体外 动力学作为合成寡核苷酸购买的DNA模板和引物的序列如 表2所示, 试剂配方如 补充文件1所示。PCR扩增用于扩大带有T7启动子的DNA模板的量,这是随后的 体外 转录(IVT)反应所必需的。此外,PCR扩增可用于同一反应中的两个目的:通过引物延伸生成全长西兰花DNA模板,以及放大DNA模板。 在IVT反应合成RNA?…

Discussion

对于外动力学实验,可以修改相同的通用方案以测量含有配体结合域和荧光团结合结构域基于RNA的荧光生物传感器的体外动力学8。在这种情况下,RNA应在注射配体后进行测量之前与荧光团一起孵育,以获得配体反应动力学。如果在重复之间观察到高变异性,则可以通过在测量前检查每个样品是否允许在96孔板中平衡相同的时间来排除故障。每个样品或重复样品?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了MCH的以下资助:NSF-BSF 1815508和NIH R01 GM124589。MRM得到了NIH T32 GM122740培训资助的部分支持。

Materials

Agarose Thermo Fischer Scientific BP160500
Agarose gel electrophoresis equipment Thermo Fischer Scientific B1A-BP
Alpha D-(+)-lactose monohydrate Thermo Fischer Scientific 18-600-440
Amber 1.5 mL microcentrifuge tubes Thermo Fischer Scientific 22431021
Ammonium persulfate (APS) Sigma-Aldrich A3678
Ammonium sulfate ((NH4)2SO4) Sigma-Aldrich A4418
Attune NxT Flow cytometer Thermo Fischer Scientific A24861
Attune 1x Focusing Fluid Thermo Fischer Scientific A24904
Attune Shutdown Solution Thermo Fischer Scientific A24975
Attune Performance Tracking Beads Thermo Fischer Scientific 4449754
Attune Wash Solution Thermo Fischer Scientific  J24974
Boric acid Sigma-Aldrich B6768
Bromophenol blue Sigma-Aldrich B0126
Carbenicillin disodium salt Sigma-Aldrich C3416
Chlorine Bleach Amazon B07J6FJR8D
Corning Costar 96-well plate Daigger Scientific EF86610A
Culture Tubes, 12 mm x 75 mm, 5 mL with attached dual position cap Globe Scientific 05-402-31
DFHBI Sigma-Aldrich SML1627
DFHBI-1T Sigma-Aldrich SML2697
D-Glucose (anhydrous) Acros Organics AC410955000
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418
Dithiothreitol (DTT) Sigma-Aldrich DTT-RO
DNA loading dye New England Biolabs B7025S
DNA LoBind Tubes (2.0 mL) Eppendorf 22431048
dNTPs: dATP, dCTP, dGTP, dTTP New England Biolabs N0446S
EDTA, pH 8.0 Gibco, Life Technologies AM9260G
Ethanol (EtOH) Sigma-Aldrich E7023
Filter-tip micropipettor tips Thermo Fischer Scientific AM12635, AM12648, AM12655, AM12665
FlowJo Software BD Biosciences N/A FlowJo v10 Software
Fluorescent plate reader with heating control VWR 10014-924
Gel electrophoresis power supply Thermo Fischer Scientific EC3000XL2
Glycerol Sigma-Aldrich G5516
Glycogen AM95010 Thermo Fischer Scientific AM95010
GraphPad Prism Dotmatics N/A Analysis software from Academic Group License 
Heat block  Thomas Scientific 1159Z11
HEPES Sigma-Aldrich H-4034
Inorganic pyrophosphatase Sigma-Aldrich I1643-500UN
Low Molecular Weight DNA Ladder New England Biolabs N3233L Supplied with free vial of Gel Loading Dye, Purple (6x), no SDS (NEB #B7025).
Magnesium chloride hexahydrate (MgCl2) Sigma-Aldrich M2670
Magnesium sulfate (MgSO4) Fisher Scientific MFCD00011110
Microcentrifuge tubes (1.5 mL) Eppendorf 22363204
Microcentrifuge with temperature control Marshall Scientific EP-5415R
Micropipettors Gilson FA10001M, FA10003M, FA10005M, FA10006M
Micropipettor tips Sigma-Aldrich Z369004, AXYT200CR, AXYT1000CR
Millipore water filter with BioPak unit Sigma-Aldrich CDUFBI001, ZRQSVR3WW
Narrow micropipettor pipette tips DOT Scientific RN005R-LRS
PBS, 10x Thermo Fischer Scientific BP39920
PCR clean-up kit Qiagen 28181
PCR primers and templates Integrated DNA technologies
PCR thermocycler for thin-walled PCR tubes Bio-Rad 1851148
PCR thermocycler for 0.5 mL tubes Techne 5PRIME/C
pET31b-T7-Spinach2 Plasmid Addgene Plasmid #79783
Phusion High-Fidelity DNA polymerase  New England Biolabs M0530L Purchase of Phusion High-Fideldity Enzyme is supplied with 5x Phusion HF Buffer, 5x Phusion GC Buffer, and MgCl2 and DMSO solutions.
Polyacrylamide gel electrophoresis gel comb, C.B.S. Scientific C.B.S. Scientific VGC-1508
Polyacrylamide gel electrophoresis equipment C.B.S. Scientific ASG-250
Potassium chloride (KCl) Sigma-Aldrich P9333
Potassium phosphate monobasic Sigma-Aldrich P5655
Razor blades Genesee Scientific 38-101
rNTPs: ATP, CTP, GTP, UTP New England Biolabs N0450L
SDS Sigma-Aldrich L3771
Short wave UV light source Thermo Fischer Scientific 11758221
Sodium carbonate (Na2CO3) Sigma-Aldrich S7795
Sodium chloride (NaCl) Sigma-Aldrich S7653
Sodium hydroxide (NaOH) Sigma-Aldrich S8045
Sodium phosphate dibasic, anhydrous Thermo Fischer Scientific S375-500
SoftMax Pro Molecular Devices N/A SoftMax Pro 6.5.1 (platereader software) obtained through Academic Group License
Sterile filter units Thermo Fischer Scientific 09-741-88
Sucrose Sigma-Aldrich S0389
SYBR Safe DNA gel stain Thermo Fischer Scientific S33102
TAE buffer for agarose gel electrophoresis Thermo Fischer Scientific AM9869
Tetramethylethylenediamine (TEMED) Sigma-Aldrich T9281
Tris base Sigma-Aldrich TRIS-RO
Tryptone (granulated) Thermo Fischer Scientific M0251S
T7 RNA polymerase New England Biolabs M0251S
Urea-PAGE Gel system  National Diagnostics EC-833
UV fluorescent TLC plate Sigma-Aldrich 1.05789.0001
UV/Vis spectrophotometer Thermo Fischer Scientific ND-8000-GL
Vortex mixer Thermo Fischer Scientific 2215415
Xylene cyanol Sigma-Aldrich X4126
Yeast Extract (Granulated) Thermo Fischer Scientific BP9727-2

Referências

  1. Su, Y., Hammond, M. C. RNA-based fluorescent biosensors for live cell imaging of small molecules and RNAs. Current Opinion in Biotechnology. 63, 157-166 (2020).
  2. Zhang, J., et al. Tandem spinach array for mRNA Imaging in living bacterial cells. Scientific Reports. 5, 17295 (2015).
  3. Wang, Z., et al. In spatial complementation of aptamer-mediated recognition enables live-cell imaging of native RNA transcripts in real time. Angewandte Chemie. 57 (4), 972-976 (2018).
  4. Strack, R. L., Disney, M. D., Jaffrey, S. R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nature Methods. 10 (12), 1219-1224 (2013).
  5. Thavarajah, W., et al. Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synthetic Biology. 9 (1), 10-18 (2020).
  6. You, M., Litke, J. L., Jaffrey, S. R. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. Proceedings of the National Academy of Sciences of the United States of America. 112 (21), 2756-2765 (2015).
  7. Kellenberger, C. A., Wilson, S. C., Sales-Lee, J., Hammond, M. C. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. Journal of the American Chemical Society. 135 (13), 4906-4909 (2013).
  8. Manna, S., Truong, J., Hammond, M. C. Guanidine biosensors enable comparison of cellular turn-on kinetics of riboswitch-based biosensor and reporter. ACS Synthetic Biology. 10 (3), 566-578 (2021).
  9. Bose, D., Su, Y., Marcus, A., Raulet, D. H., Hammond, M. C. An RNA-based fluorescent biosensor for high-throughput analysis of the cGAS-cGAMP-STING pathway. Cell Chemical Biology. 23 (12), 1539-1549 (2016).
  10. Wang, X. C., Wilson, S. C., Hammond, M. C. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Research. 44 (17), 139 (2016).
  11. Paige, J. S., Thinh, N. -. D., Wenjiao, S., Jaffrey, S. R. Fluorescence imaging of cellular metabolites with RNA. Science. 335 (6073), 1194 (2012).
  12. Paige, J. S., Wu, K. Y., Jaffrey, S. R. RNA mimics of green fluorescent protein. Science. 333 (6042), 642-646 (2011).
  13. Filonov, G. S., Moon, J. D., Svensen, N., Jaffrey, S. R. Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. Journal of the American Chemical Society. 136 (46), 16299-16308 (2014).
  14. Song, W., Strack, R. L., Svensen, N., Jaffrey, S. R. Plug-and-play fluorophores extend the spectral properties of spinach. Journal of the American Chemical Society. 136 (4), 1198-1201 (2014).
  15. Sambrook, J., Fritsch, E., Maniatis, T. . Molecular Cloning: A Laboratory Manual. , (1989).
  16. Basch, H., Gadebusch, H. H. In vitro antimicrobial activity of dimethylsulfoxide. Applied Microbiology. 16 (12), 1953-1954 (1968).
  17. Kallansrud, G., Ward, B. A comparison of measured and calculated single- and double-stranded oligodeoxynucleotide extinction coefficients. Analytical Biochemistry. 236 (1), 134-138 (1996).
  18. Wilson, S. C., Cohen, D. T., Wang, X. C., Hammond, M. C. A neutral pH thermal hydrolysis method for quantification of structured RNAs. RNA. 20 (7), 1153-1160 (2014).
  19. Szatmári, D., et al. Intracellular ion concentrations and cation-dependent remodelling of bacterial MreB assemblies. Scientific Reports. 10, 12002 (2020).
  20. Boulos, L., Prévost, M., Barbeau, B., Coallier, J., Desjardins, R. LIVE/DEAD® BacLightTM: Application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods. 37 (1), 77-86 (1999).
  21. Huang, H., et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nature Chemical Biology. 10 (8), 686-691 (2014).
  22. Jeng, S. C. Y., Chan, H. H. Y., Booy, E. P., McKenna, S. A., Unrau, P. J. Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers. RNA. 22 (12), 1884-1892 (2016).
  23. Han, K. Y., Leslie, B. J., Fei, J., Zhang, J., Ha, T. Understanding the photophysics of the Spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. Journal of the American Chemical Society. 135 (50), 19033-19038 (2013).
  24. Wang, P., et al. Photochemical properties of Spinach and its use in selective imaging. Chemical Science. 4 (7), 2865-2873 (2013).
  25. Dao, N. T., et al. Photophysics of DFHBI bound to RNA aptamer Baby Spinach. Scientific Reports. 11, 7356 (2021).
check_url/pt/64367?article_type=t

Play Video

Citar este artigo
Mumbleau, M. M., Meyer, M. R., Hammond, M. C. Determination of In Vitro and Cellular Turn-on Kinetics for Fluorogenic RNA Aptamers. J. Vis. Exp. (186), e64367, doi:10.3791/64367 (2022).

View Video