Summary

使用荧光素酶转导的人T细胞追踪双特异性抗体诱导的T细胞运输

Published: May 12, 2023
doi:

Summary

在这里,我们描述了一种用荧光素酶转导人T细胞的方法,以促进双特异性抗体诱导的T细胞向肿瘤的 体内跟踪, 以评估T细胞结合双特异性抗体的抗肿瘤功效和机制。

Abstract

T细胞结合双特异性抗体(T-BsAbs)处于实体瘤临床前开发和临床试验的不同阶段。化合价、空间排列、域间距离和Fc突变等因素影响这些疗法的抗肿瘤疗效,通常是通过影响T细胞归巢到肿瘤,这仍然是一个主要挑战。在这里,我们描述了一种用荧光素酶转导活化的人T细胞的方法,允许在T-BsAb治疗研究期间对T细胞进行 体内 跟踪。T-BsAbs将T细胞重定向到肿瘤的能力可以在治疗期间的多个时间点进行定量评估,使研究人员能够将T-BsAbs和其他干预措施的抗肿瘤功效与T细胞在肿瘤中的持久性相关联。该方法减轻了在治疗期间牺牲动物以组织学评估T细胞浸润的需要,并且可以在多个时间点重复以确定治疗期间和治疗后T细胞运输的动力学。

Introduction

T 细胞结合双特异性抗体 (T-BsAb) 是一种工程抗体,用于通过一个结合臂结合 T 细胞和通过另一个结合臂结合肿瘤抗原,为多克隆 T 细胞提供人工特异性。该技术已成功应用于血液系统癌症(靶向CD19的blinatumomab1),并且许多T-BsAbs也处于各种实体瘤的临床前和临床开发中2。T-BsAbs以主要组织相容性复合体(MHC)非依赖性方式接合多克隆T细胞,因此即使是下调人白细胞抗原(HLA)的肿瘤也容易受到这种类型的治疗34。T-BsAbs已经以数十种不同的形式开发,在T细胞和肿瘤结合臂的化合价和空间排列,域间距离以及包含Fc结构域方面存在差异,这会影响半衰期并且可以诱导效应功能(如果存在5)。我们实验室先前的工作表明,这些因素显着影响T-BsAbs的抗肿瘤功效,效力差异高达1,000倍6。通过这项工作,我们将IgG-[L]-scFv格式确定为T-BsAb的理想平台(有关T-BsAb格式的更多详细信息,请参阅代表性结果部分),并将该平台应用于包括GD2(神经母细胞瘤),HER2(乳腺癌和骨肉瘤),GPA33(结直肠癌),STEAP1(尤因肉瘤),CD19(B细胞恶性肿瘤)和CD33(B细胞恶性肿瘤)在内的靶点78910111213.

在实体瘤中成功实施T-BsAb疗法的主要挑战之一是克服免疫抑制肿瘤微环境(TME)以驱动T细胞向肿瘤的运输14。上述影响T-BsAb功效的因素对T-BsAb有效诱导T细胞归巢到肿瘤的能力有显著影响,但这种影响很难在 体内 系统中实时评估。本手稿详细介绍了在T-BsAbs临床前研究中使用荧光素酶转导的T细胞来评估治疗期间实验免疫功能低下小鼠模型中T细胞转运到各种组织的应用。该方法的总体目标是提供一种评估肿瘤和其他组织中T细胞浸润的方法,以及实时洞察T细胞归巢动力学和持久性,而无需在治疗期间牺牲动物。对于越来越多的专注于细胞免疫疗法的研究人员来说,在临床前动物 模型中追踪体内 T细胞的能力至关重要。我们的目标是提供我们用于跟踪荧光素酶转导T细胞的方法的彻底,详细的描述,以使其他研究人员能够轻松复制该技术。

Protocol

以下程序已由纪念斯隆凯特琳的机构动物护理和使用委员会评估和批准。 1. 用荧光素酶转染293T细胞并收获病毒上清液 293T细胞培养通过将以下内容添加到一升DMEM中来制备培养基:110 mL热灭活胎牛血清(FBS),11 mL青霉素链霉素。 解冻5 x 106 293T细胞,并将其转移到T175烧瓶中,培养基如上所述制备。 每 10 天以 1:10 的比例拆分…

Representative Results

如步骤4.3所述,小鼠可以在成像过程中以不同的位置定向,以评估不同组织中T细胞的存在。仰卧位可以评估肺部的T细胞,这在注射后的早期时间点很常见。皮下异种移植物朝上的侧位用于最好地评估 T 细胞向肿瘤的运输。雌性 C.Cg-Rag2tm1Fwa Il2rgtm1Sug / JicTac小鼠用于本手稿中描述的所有实验。图1显示了来自实验的图像,其中携带GD2阳性异种移植物的小?…

Discussion

虽然T-BsAb blinatumomab已被批准用于CD19阳性血液系统恶性肿瘤,但T-BsAbs在实体瘤中的成功实施已被证明要困难得多。Catumaxomab是一种针对上皮细胞粘附分子(EPCAM)的T-BsAb,被批准用于治疗卵巢癌患者的恶性腹水,但该药物的生产随后因商业原因而停止19。没有其他T-BsAb被批准用于实体瘤,这强调了与这种治疗相关的挑战。细胞因子释放综合征(CRS)引起的毒性是一个常见问题,尽?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者要感谢Vladimir Ponomarev博士分享本文代表性结果部分描述的实验中使用的荧光素酶构建体。

Materials

293T cells ATCC CRL-11268
BSA Sigma Aldrich A7030-10G
CD3/CD28 beads Gibco (ThermoFisher) 11161D
D-Luciferin, Potassium Salt Goldbio LUCK-1G
DMEM Gibco (ThermoFisher) 11965092
DNA in vitro transfection reagent (polyjet) SignaGen Laboratories SL100688
EDTA Sigma Aldrich E9884-100G
FBS Gibco (ThermoFisher) 10437028
Gag/pol plasmid Addgene 14887
GFP plasmid Addgene 11150-DNA.cg
Penicilin-Streptomycin Gibco (ThermoFisher) 15140122
Recombinant human IL-2 R&D Systems 202-IL-010/CF
Retronectin Takara T100B
Trypsin Gibco (ThermoFisher) 25-300-120
VSV-G plasmid Addgene 8454

Referências

  1. Gökbuget, N., et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 131 (14), 1522-1531 (2018).
  2. Runcie, K., Budman, D. R., John, V., Seetharamu, N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Molecular Medicine. 24 (1), 50 (2018).
  3. Dreier, T., et al. T Cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- Bispecific single-chain antibody construct. The Journal of Immunology. 170 (8), 4397-4402 (2003).
  4. Offner, S., Hofmeister, R., Romaniuk, A., Kufer, P., Baeuerle, P. A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Molecular Immunology. 43 (6), 763-771 (2006).
  5. Santich, B. H., Cheung, N. V., Klein, C. Editorial: Bispecific antibodies for T-cell based immunotherapy. Frontiers in Oncology. 10, 628005 (2020).
  6. Santich, B. H., et al. Interdomain spacing and spatial configuration drive the potency of IgG-[L]-scFv T cell bispecific antibodies. Science Translational Medicine. 12 (534), eaax1315 (2020).
  7. Wang, L., Hoseini, S. S., Xu, H., Ponomarev, V., Cheung, N. K. Silencing Fc domains in T cell-engaging bispecific antibodies improves T-cell trafficking and antitumor potency. Cancer Immunology Research. 7 (12), 2013-2024 (2019).
  8. Park, J. A., Cheung, N. V. GD2 or HER2 targeting T cell engaging bispecific antibodies to treat osteosarcoma. Journal of Hematology & Oncology. 13 (1), 172 (2020).
  9. Wu, Z., Guo, H. F., Xu, H., Cheung, N. V. Development of a tetravalent anti-GPA33/anti-CD3 bispecific antibody for colorectal cancers. Molecular Cancer Therapeutics. 17 (10), 2164-2175 (2018).
  10. Lin, T. Y., Park, J. A., Long, A., Guo, H. F., Cheung, N. V. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy. Journal for Immunotherapy of Cancer. 9 (9), e003114 (2021).
  11. Hoseini, S. S., Espinosa-Cotton, M., Guo, H. F., Cheung, N. V. Overcoming leukemia heterogeneity by combining T cell engaging bispecific antibodies. Journal for Immunotherapy of Cancer. 8 (2), e001626 (2020).
  12. Hoseini, S. S., Guo, H., Wu, Z., Hatano, M. N., Cheung, N. V. A potent tetravalent T-cell-engaging bispecific antibody against CD33 in acute myeloid leukemia. Blood Advances. 2 (11), 1250-1258 (2018).
  13. Hoseini, S. S., et al. T cell engaging bispecific antibodies targeting CD33 IgV and IgC domains for the treatment of acute myeloid leukemia. Journal for Immunotherapy of Cancer. 9 (5), e002509 (2021).
  14. Li, H., Er Saw, P., Song, E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cellular and Molecular Immunology. 17 (5), 451-461 (2020).
  15. Rajabzadeh, A., Hamidieh, A. A., Rahbarizadeh, F. Spinoculation and retronectin highly enhance the gene transduction efficiency of Mucin-1-specific chimeric antigen receptor (CAR) in human primary T cells. BMC Molecular and Cell Biology. 22 (1), 57 (2021).
  16. Kleeman, B., et al. A guide to choosing fluorescent protein combinations for flow cytometric analysis based on spectral overlap. Cytometry Part A. 93 (5), 556-562 (2018).
  17. Park, J. A., Santich, B. H., Xu, H., Lum, L. G., Cheung, N. V. Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release. Journal for Immunotherapy of Cancer. 9 (5), e002222 (2021).
  18. Park, J. A., Wang, L., Cheung, N. V. Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. Journal of Hematology & Oncology. 14 (1), 142 (2021).
  19. Ströhlein, M. A., Heiss, M. M. The trifunctional antibody catumaxomab in treatment of malignant ascites and peritoneal carcinomatosis. Future Oncology. 6 (9), 1387-1394 (2010).
  20. Rabinovich, B. A., et al. Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proceedings of the National Academy of Sciences. 105 (38), 14342-14346 (2008).
  21. Skovgard, M. S., et al. Imaging CAR T-cell kinetics in solid tumors: Translational implications. Molecular Therapy Oncolytics. 22, 355-367 (2021).

Play Video

Citar este artigo
Espinosa-Cotton, M., Guo, H., Cheung, N. V. Tracking Bispecific Antibody-Induced T Cell Trafficking Using Luciferase-Transduced Human T Cells. J. Vis. Exp. (195), e64390, doi:10.3791/64390 (2023).

View Video