Summary

小鼠肝部分切除术后再生肝细胞的分离

Published: December 02, 2022
doi:

Summary

富含脂质的肝细胞是肝脏再生所固有的,但通常在密度梯度离心时丢失。在这里,我们提出了一种优化的细胞分离方案,该方案保留了脂肪变性肝细胞,在小鼠部分肝切除术后产生具有代表性的再生肝细胞群。

Abstract

部分肝切除术已被广泛用于研究小鼠的肝脏再生,但分离高产量的活肝细胞用于下游单细胞应用具有挑战性。在小鼠正常肝脏再生的前2天观察到再生肝细胞内脂质的显着积累。这种所谓的短暂再生相关脂肪变性(TRAS)是暂时的,但部分与主要增殖期重叠。密度梯度纯化是大多数现有原代肝细胞分离方案的支柱。由于梯度纯化依赖于细胞的密度和大小,因此它将非脂肪性肝细胞群与脂肪性肝细胞群分开。因此,脂肪肝细胞经常丢失,产生不具代表性的肝细胞分数。

所提出的方案描述了一种简单可靠的方法,用于 体内 分离再生肝细胞,无论其脂质含量如何。通过经典的两步胶原酶灌注方法在肝切除术后24-48小时分离来自雄性C57BL / 6小鼠的肝细胞。标准蠕动泵使用逆行灌注技术将加热的溶液 通过 导管下腔静脉驱动到残余静脉中,并通过门静脉流出。肝细胞被胶原酶解离,从Glisson的胶囊中释放出来。洗涤和仔细离心后,肝细胞可用于任何下游分析。总之,本文描述了一种直接且可重复的技术,用于分离小鼠部分肝切除术后代表性的再生肝细胞群体。该方法也可能有助于脂肪肝疾病的研究。

Introduction

即使在组织大量流失后,肝脏也可以自我再生。这种独特的再生能力在部分(70%)肝切除术的实验模型中得到了明确说明,希金斯和安德森于1931年首次在大鼠中描述了1。在这个模型中,通过手术从动物身上切除70%的肝脏,方法是通过剪掉较大的肝叶。然后,剩余的叶通过代偿性肥大生长,在手术后约1周内恢复原始肝脏肿块,尽管没有恢复原始肝脏结构23。已经开发了具有不同组织切除量的其他肝切除术,例如86%扩展的肝切除术,其中肝脏残留物太小而无法恢复,最终导致肝切除术后肝衰竭(PHLF)和随后30%-50%的动物死亡456。这些模型能够研究正常和失败的肝脏再生,具体取决于切除组织的数量(图1)。

尽管肝脏切除术的小鼠模型已经成功使用多年,但直到最近才有更先进的分析方法允许在单细胞水平上更深入地了解。然而,对于大多数这些方法,单个肝细胞的存在是一个基本的先决条件。大多数分离原代肝细胞的方案基于两步胶原酶灌注技术和随后的密度梯度纯化,以从碎片和非实质以及死细胞中分离活肝细胞789。这种方法首先由Berry和Friend在196910中描述,并由Seglen及其同事在19721112中进行了改编。然而,由于梯度离心依赖于细胞的密度和大小,因此在标准纯化过程中通常会丢失富含脂质的肝细胞。虽然对于许多研究问题来说,这种损失可以忽略不计,但它是早期肝脏再生的一个关键方面。在前2天,再生小鼠肝脏内的肝细胞积累脂质,从而增大大小并降低密度。这种短暂的再生相关脂肪变性(TRAS)用于提供再生燃料,并且是暂时的,但部分重叠了主要的增殖阶段,并且在肝小叶(肝脏的功能单位)内分布不均匀1314。然而,在延长86%肝切除术后,TRAS也发生但持续存在,因为再生停滞并且脂质没有被氧化14。因此,在70%或86%肝切除术后对肝细胞进行梯度纯化将产生不具代表性的组分,因为大多数含脂质的肝细胞由于其低密度而丢失15

在这种改良的分离方案中,通过经典的两步胶原酶灌注方法在肝切除术后24-48小时分离来自C57BL / 6小鼠的肝细胞。通常,用于细胞分离的残余物的插管和灌注是通过门 静脉完成的 。然而,大切除后留下的小残留物的门血管阻力高达16,因此灌注很微妙。由于腔静脉不受肝切除术的影响,因此可以通过插管 腔静脉轻松地 在逆行方向进行灌注。标准蠕动泵通过导管插入的下腔静脉 加热的溶液驱动到肝脏残余物中,使用逆行灌注并通过门静脉流出(补充图S1)。肝细胞被胶原酶解离并从Glisson的胶囊中释放出来。在使用低速离心方法逐步分离和仔细处理活肝细胞后,肝细胞可用于任何下游分析。

Protocol

所有动物实验均符合瑞士联邦动物法规,并经苏黎世兽医局批准(n° 007/2017,156/2019),确保人类护理。将10-12周龄的雄性C57BL / 6小鼠保持在12小时的昼夜循环中,并自由获取食物和水。每个实验组由六到八只动物组成。有关本协议中使用的所有材料、设备和试剂的详细信息,请参阅 材料表 。 1.小鼠肝部分切除术 对于标准肝切除术(70%),结?…

Representative Results

TRAS在肝切除术后16小时达到峰值,并在标准肝切除术后32-48小时逐渐消失,但在延长肝切除术后持续超过48小时。在肉眼上,TRAS很容易看到肝脏残留物的苍白肤色(图1F),并且可以在手术后16小时至48小时之间在肝切除小鼠中观察到。 估计的最终产量为70%肝切除术后10-15×106 肝细胞和延长86%肝切除术后4-9×106 肝细胞,平均最终生存能力分…

Discussion

已发布的方案提供了一种可靠且直接的方法来分离高产量的正常和脂肪变性小鼠肝细胞,用于单细胞下游分析或FACS分选后的细胞批量分析。与密度梯度纯化相比,其明显优势在于细胞脂质含量对肝细胞的有效产量基本上没有影响。因此,脂肪变性肝细胞的比例将被保留并包含在下游分析中。这不仅对于脂肪源性肝病的研究至关重要,而且对于主要肝切除术后的任何过程分析也至关重要,其中肝细…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了瑞士国家基金(项目赠款310030_189262)的支持。

Materials

Reagents
Alexa Fluor 488 Zombie green BioLegend 423111 Amine-reactive viability dye
Attane Isoflurane ad us. vet. 99.9% Provet AG QN01AB06 CAUTION: needs ventilation
EDTA solution Sigma-Aldrich E8008-100ML
Ethanol Sigma-Aldrich V001229 Dilute with water to 70%
Fetal bovine serum (FCS) Gibco A5256701
Hanks' Balanced Salt Solution (HBSS), Ca2+, Mg2+, phenol red Sigma-Aldrich H9269-6x600ML For digestion/preservation
Hanks' Balanced Salt solution (HBSS), w/o Ca2+, w/o Mg2+, no phenol red Sigma-Aldrich H6648-6x500ML For perfusion buffer
HEPES solution, 1 M Sigma-Aldrich 83264-100ML-F
Histoacryl tissue adhesive (butyl-2-cyanoacrylate) B. Braun 1050052 For stabilization of cannulation site
Hoechst 33258 Staining Dye Solution Abcam ab228550
Liberase Research Grade Roche 5401119001 Lyophilized collagenases I/II
NaCl 0.9% 500 mL Ecotainer B. Braun 123
Paralube Vet Ointment Dechra 17033-211-38
Phosphate buffered saline (PBS) Gibco A1286301
Sudan IV – Lipid staining Sigma-Aldrich V001423
Temgesic (Buprenorphine hydrochloride), Solution for Injection 0.3 mg/mL Indivior Europe Ltd. 345928 Narcotics. Store securely.
Trypan blue, 0.4%, sterile-filtered Sigma-Aldrich T8154 For cell counting
Williams’ Medium E Sigma-Aldrich W4128-500ML
Materials
25 mL serological pipette, Greiner Cellstar Merck P7865
50 mL Falcon tubes TPP
BD Neoflon, Pro IV Catheter 26 G BD Falcon 391349
Cell scraper, rotating blade width 25 mm TPP 99004
Falcon Cell Strainer 100 µm Nylon BD Falcon 352360
Fenestrated sterile surgical drape Reusable cloth material
Filling nozzle for size 16# tubing (ID 3.1 mm) Drifton FILLINGNOZZLE#16 To go into the tubes
Flow cytometry tubes, 5 mL BD Falcon 352008
Male Luer to Barb, Tubing ID 3.2 mm Drifton LM41 Connection tube to syringe
Petri dishes, 96 x 21 mm TPP 93100
Prolene 5-0 Ethicon 8614H To retract the sternum
Prolene 6-0 Ethicon 8695H For skin suture
Prolene 8-0 Ethicon EH7470E Ligature gall bladder
Tube 16#, WT 1.6 mm, ID 3.2 mm, OD 6.4 mm Drifton SC0374T Perfusion tube
Equipment
BD LSRFortessa Cell Analyzer Flow Cytometer BD
Isis rodent shaver Aesculap GT421
Isofluran station Provet
Low-speed centrifuge – Scanspeed 416 Labogene
Neubauer-improved counting chamber Marienfeld
Oxygen concentrator – EverFlo Philips  1020007 0 – 5 L/min
Pipetboy – Pipettor Turbo-Fix TPP 94700
Shenchen perfusion pump – YZ1515x Shenchen YZ1515x
Surgical microscope – SZX9 Olympus
ThermoLux warming mat Thermo Lux
Vortex Genie 2, 2700 UpM NeoLab 7-0092
Water bath – Precision GP 02 Thermo scientific Adjust to 42 °C

Referências

  1. Higgins, G., Anderson, R. Experimental pathology of liver. I. Restoration of liver of white rat following partial surgical removal. Archives of Pathology & Laboratory Medicine. 12, 186-202 (1931).
  2. Taub, R. Liver regeneration: from myth to mechanism. Nature Reviews Molecular Cell Biology. 5 (10), 836-847 (2004).
  3. Nevzorova, Y. A., Tolba, R., Trautwein, C., Liedtke, C. Partial hepatectomy in mice. Lab Animal. 49, 81-88 (2015).
  4. Lehmann, K., et al. Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology. 143 (6), 1609-1619 (2012).
  5. Makino, H., et al. A good model of hepatic failure after excessive hepatectomy in mice. Journal of Surgical Research. 127 (2), 171-176 (2005).
  6. Lizardo Thiebaud, M. J., Cervantes-Alvarez, E., Navarro-Alvarez, N., Gayam, V., Engin, O. . Liver Pathology. , (2019).
  7. Charni-Natan, M., Goldstein, I. Protocol for primary mouse hepatocyte isolation. STAR Protocols. 1 (2), 100086 (2020).
  8. Smedsrød, B., Pertoft, H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. Journal of Leukocyte Biology. 38 (2), 213-230 (1985).
  9. Mederacke, I., Dapito, D. H., Affò, S., Uchinami, H., Schwabe, R. F. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nature Protocols. 10 (2), 305-315 (2015).
  10. Berry, M. N., Friend, D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. Journal of Cell Biology. 43 (3), 506-520 (1969).
  11. Seglen, P. O. Preparation of rat liver cells. I. Effect of Ca 2+ on enzymatic dispersion of isolated, perfused liver. Experimental Cell Research. 74 (2), 450-454 (1972).
  12. Seglen, P. O. Preparation of isolated rat liver cells. Methods in Cell Biology. 13, 29-83 (1976).
  13. Trotter, N. L. A fine structure study of lipid in mouse liver regenerating after partial hepatectomy. Journal of Cell Biology. 21 (2), 233-244 (1964).
  14. Kachaylo, E., et al. PTEN down-regulation promotes β-oxidation to fuel hypertrophic liver growth after hepatectomy in mice. Hepatology. 66 (3), 908-921 (2017).
  15. Jung, Y., Zhao, M., Svensson, K. J. Isolation, culture, and functional analysis of hepatocytes from mice with fatty liver disease. STAR Protocols. 1 (3), 100222 (2020).
  16. Dold, S., et al. Portal hyperperfusion after extended hepatectomy does not induce a hepatic arterial buffer response (HABR) but impairs mitochondrial redox state and hepatocellular oxygenation. PLoS One. 10 (11), 0141877 (2015).
  17. Boyce, S., Harrison, D. A detailed methodology of partial hepatectomy in the mouse. Laboratory Animals. 37 (11), 529-532 (2008).
  18. Mitchell, C., Willenbring, H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nature Protocols. 3 (7), 1167-1170 (2008).
  19. Chen, T., Oh, S., Gregory, S., Shen, X., Diehl, A. M. Single-cell omics analysis reveals functional diversification of hepatocytes during liver regeneration. JCI Insight. 5 (22), (2020).
  20. Chembazhi, U. V., Bangru, S., Hernaez, M., Kalsotra, A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Research. 31 (4), 576-591 (2021).
  21. Fiegel, H. C., Kaufmann, P. M., Kneser, U., Kluth, D., Rogiers, X. Priming of hepatocytes for cell culture by partial hepatectomy prior to cell isolation. Journal of Tissue Engineering. 6 (6), 619-626 (2000).
  22. Roche, . Liberase TM Research Grade. , (2020).
  23. Giugliano, S., et al. Hepatitis C virus infection induces autocrine interferon signaling by human liver endothelial cells and release of exosomes, which inhibits viral replication. Gastroenterology. 148 (2), 392-402 (2015).
  24. Shetty, S., et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. The Journal of Immunology. 186 (7), 4147-4155 (2011).
  25. Edwards, S., Lalor, P. F., Nash, G. B., Rainger, G. E., Adams, D. H. Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes. Hepatology. 41 (3), 451-459 (2005).
  26. Helling, T. S. Liver failure following partial hepatectomy. HPB. 8 (3), 165-174 (2006).
  27. Saran, U., Humar, B., Kolly, P., Dufour, J. F. Hepatocellular carcinoma and lifestyles. Journal of Hepatology. 64 (1), 203-214 (2016).
  28. Park, W. Y., et al. Sugar-sweetened beverage, diet soda, and nonalcoholic fatty liver disease over 6 years: the Framingham Heart Study. Clinical Gastroenteroly and Hepatology. , (2021).
  29. Pocha, C., Kolly, P., Dufour, J. F. Nonalcoholic fatty liver disease-related hepatocellular carcinoma: a problem of growing magnitude. Seminars in Liver Disease. 35 (3), 304-317 (2015).
  30. Roeb, E. Excess body weight and metabolic (dysfunction)-associated fatty liver disease (MAFLD). Visceral Medicine. 37 (4), 273-280 (2021).
check_url/pt/64493?article_type=t

Play Video

Citar este artigo
Breuer, E., Humar, B. Isolation of Regenerating Hepatocytes after Partial Hepatectomy in Mice. J. Vis. Exp. (190), e64493, doi:10.3791/64493 (2022).

View Video