Summary

小鼠轻度创伤性脑损伤的电磁控制闭头模型

Published: September 28, 2022
doi:

Summary

该协议描述了小鼠模型中的轻度创伤性脑损伤。特别是,充分解释了诱导轻度中线闭合性头部损伤的分步方案和动物模型的特征。

Abstract

需要高度可重复的创伤性脑损伤(TBI)动物模型,具有明确的病理,用于测试治疗干预和了解TBI如何改变大脑功能的机制。TBI的多种动物模型的可用性对于模拟人类中TBI的不同方面和严重程度是必要的。本手稿描述了使用中线闭合性头部损伤 (CHI) 开发轻度 TBI 小鼠模型。该模型被认为是轻微的,因为它不会产生基于神经影像学或严重神经元丢失的结构性脑损伤。然而,一次撞击会产生足够的病理,以至于认知障碍在受伤后至少 1 个月是可测量的。论文中定义了使用立体定向引导的电磁撞击器在小鼠中诱导CHI的分步方案。轻度中线CHI模型的优点包括损伤引起的变化的可重复性和低死亡率。该模型在损伤后长达 1 年内对神经影像学、神经化学、神经病理学和行为变化进行了时间表征。该模型与使用相同的撞击装置的受控皮质撞击的开放颅骨模型相辅相成。因此,实验室可以使用相同的撞击器模拟轻度弥漫性 TBI 和局灶性中度至重度 TBI。

Introduction

创伤性脑损伤 (TBI) 是由大脑上的外力引起的,通常与跌倒、运动损伤、身体暴力或交通事故有关。2014 年,美国疾病控制和预防中心确定,有 253 万美国人前往急诊室寻求 TBI 相关事故的医疗帮助1.由于轻度 TBI (mTBI) 占 TBI 病例的大多数,在过去的几十年中,已经采用了多种 mTBI 模型,包括体重下降、活塞驱动的闭合性头部损伤和控制皮质冲击、旋转损伤、轻度液体叩诊损伤和爆炸损伤模型23。mTBI模型的异质性有助于解决与人类中观察到的mTBI相关的不同特征,并帮助评估与脑损伤相关的细胞和分子机制。

在常用的闭合性头部损伤模型中,最早也是最广泛使用的模型之一是重量下降法,其中物体从特定高度掉落到动物的头部(麻醉或清醒)24。在减重法中,损伤的严重程度取决于几个参数,包括是否进行开颅术,头部固定或自由,以及坠落物体的距离和重量24。该模型的一个缺点是损伤严重程度的高度可变性和与呼吸抑制相关的高死亡率56。一种常见的替代方案是使用气动或电磁装置进行冲击,这可以直接在暴露的硬脑膜(受控皮质冲击:CCI)或闭合颅骨(闭合性头部损伤:CHI)上进行。活塞驱动损伤的优势之一是其高可重复性和低死亡率。然而,CCI 需要开颅术78而开颅术本身会诱发炎症9。相反,在CHI模型中,不需要开颅手术。如前所述,每个模型都有局限性。本文中描述的CHI模型的局限性之一是使用立体定位框架进行手术,并且动物的头部是固定的。虽然完全头部固定可确保可重复性,但它不考虑撞击后可能导致与mTBI相关的损伤的运动。

该协议描述了在鼠标10中用市售电磁撞击器装置10执行CHI撞击的基本方法。该协议详细说明了实现高度可重复损伤所涉及的确切参数。特别是,研究者可以精确控制参数(损伤深度、停留时间和撞击速度),以精确定义损伤严重程度。如前所述,该CHI模型产生的损伤导致双侧病理,包括弥漫性和微观(即,神经胶质细胞的慢性激活,轴突和血管损伤)和行为表型1112,131415此外,所描述的模型被认为是温和的,因为它即使在受伤后 1 年也不会诱导基于 MRI 的结构性脑损伤或病理学上的大体病变1617

Protocol

进行的实验得到了肯塔基大学机构动物护理和使用委员会(IACUC)的批准,并且在研究期间遵循了ARRIVE和实验动物护理和使用指南指南。 1. 手术设置 注意:将小鼠饲养在4-5/笼中,房屋室内湿度保持在43%-47%,温度保持在22-23°C。让小鼠 随意 获得食物和水,并暴露于12小时/ 12小时光照/黑暗循环(上午7点/ 下午7点)。 使用指定的?…

Representative Results

这种立体定位电磁冲击器装置用途广泛。它用于开放性颅骨控制皮质冲击 (CCI) 或闭合性头部损伤 (CHI) 手术。此外,可以通过改变损伤参数(如冲击速度、停留时间、撞击深度、撞击器尖端和损伤目标)来调节损伤严重程度。本文描述了使用5.0毫米钢头冲击器的CHI手术。这种损伤被认为是轻微的,因为没有结构性脑损伤。成年小鼠的死亡率低于0.9,14,<sup class="xr…

Discussion

使用所描述的模型重新创建一致的伤害模型涉及几个步骤。首先,将动物正确固定在立体定位框架中至关重要。动物的头部不应能够横向移动,头骨应完全平坦,前膛和λ读取相同的坐标。正确放置耳杆是这种手术中最困难的方面,这只能通过实践来学习。如果颅骨不水平,应在诱发CHI之前调整头部。 未能调整头部位置会导致颅骨骨折。要评估头骨是否扁平,应该从尖端周围的各个角度查看头骨?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院的部分支持,奖励号为R01NS120882,RF1NS119165和R01NS103785以及国防部奖励号AZ190017。内容完全由作者负责,不代表美国国立卫生研究院或国防部的官方观点。

Materials

9 mm Autoclip Applier Braintree scientific ACS- APL Surgery
9 mm Autoclip Remover Braintree scientific ACS- RMV Surgery
9 mm Autoclip, Case of 1,000 clips Braintree scientific ACS- CS Surgery (Staples)
Aperio ImageScope software  Leica BioSystems NA  IHC
BladeFLASK Blade Remover Fisher Scientific 22-444-275 Surgery
Cotton tip applicator VWR 89031-270 Surgery
Digitial mouse stereotaxic frame Stoelting 51730D Surgery
Dumont #7 Forceps Roboz RS-5047 Surgery
Ear bars Stoelting 51649 Surgery
EthoVision XT 11.0  Noldus Information Technology NA RAWM 
Fiber-Lite Dolan-Jeffer Industries UN16103-DG Surgery
Fisherbrand Bulb for Small Pipets Fisher Scientific 03-448-21 Head support apparatus
Gemini Avoidance System San Diego Instruments NA Active avoidance
Heating Pad Sunbeam  732500000U Surgery prep
HRP conjugated goat anti-rabbit IgG  Jackson Immuno Research laboratories 111-065-144  IHC
Induction chamber Kent Scientific VetFlo-0530XS Surgery prep
Isoflurane, USP Covetrus NDC: 11695-6777-2 Surgery
Mouse gas anesthesia head holder Stoelting 51609M Surgery
Neuropactor Stereotaxic Impactor Neuroscience Tools n/a Surgery: Formally distributed by Lecia as impact one
NexGen Mouse 500 Allentown  n/a Post-surgery, holding cage
Parafilm Bemis PM992 Head support apparatus
Peanut – Professional Hair Clipper Whal 8655-200  Surgery prep
Povidone-Iodine Solution USP, 10% (w/v), 1% (w/v) available Iodine, for laboratory Ricca 3955-16 Surgery
Puralube Vet Oinment,petrolatum ophthalmic ointment, Sterile ocular lubricant Dechra 17033-211-38 Surgery
Rabbit anti-GFAP  Dako Z0334 IHC
Rabbit anti-IBA1  Wako 019-19741 IHC
8-arm Radial Arm Water Maze MazeEngineers n/a RAWM 
Scale OHAUS CS series BAL-101 Surgery prep
Scalpel Handle #7 Solid 6.25"  Roboz RS-9847 Surgery
Sterile Alcohol Prep Pads (isopropyl alcohol 70% v/v) Fisher Brand 22-363-750 Surgery prep
SumnoSuite low-flow anesthesia system Kent Scientific SS-01 Surgery
10 mL syringe Luer-Lok Tip BD Bard-Parker 302995 Head support apparatus
Timers Fisher Scientific 6KED8 Surgery
Topical anesthetic cream L.M.X 4 NDC 0496-0882-15 Surgery prep
Triple antibiotic ointment Major NDC 0904-0734-31 Post-surgery
Tubing MasterFlex 96410-16 Head support apparatus
Vaporizer Single Channel Anesthesia System Kent Scientific VetFlo-1210S Surgery prep

Referências

  1. Capizzi, A., Woo, J., Verduzco-Gutierrez, M. Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. The Medical Clinics of North America. 104 (2), 213-238 (2020).
  2. Bodnar, C. N., Roberts, K. N., Higgins, E. K., Bachstetter, A. D. A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. Journal of Neurotrauma. 36 (11), 1683-1706 (2019).
  3. Shultz, S. R., et al. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neuroscience and Biobehavioral Reviews. 76, 396-414 (2017).
  4. Xiong, Y., Mahmood, A., Chopp, M. Animal models of traumatic brain injury). Nature Reviews Neuroscience. 14 (2), 128-142 (2013).
  5. Albert-Weissenberger, C., Varrallyay, C., Raslan, F., Kleinschnitz, C., Siren, A. L. An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice. Experimental and Translational Stroke Medicine. 4, 1 (2012).
  6. Chen, Y., Constantini, S., Trembovler, V., Weinstock, M., Shohami, E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. Journal of Neurotrauma. 13 (10), 557-568 (1996).
  7. Dixon, C. E., Clifton, G. L., Lighthall, J. W., Yaghmai, A. A., Hayes, R. L. A controlled cortical impact model of traumatic brain injury in the rat. Journal of Neuroscience Methods. 39 (3), 253-262 (1991).
  8. Schwulst, S. J., Islam, M. Murine model of controlled cortical impact for the induction of traumatic brain injury. Journal of Visualized Experiments. (150), e60027 (2019).
  9. Cole, J. T., et al. Craniotomy: True sham for traumatic brain injury, or a sham of a sham. Journal of Neurotrauma. 28 (3), 359-369 (2011).
  10. Brody, D. L., et al. Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. Journal of Neurotrauma. 24 (4), 657-673 (2007).
  11. Webster, S. J., Van Eldik, L. J., Watterson, D. M., Bachstetter, A. D. Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment. The Journal of Neuroscience. 35 (16), 6554-6569 (2015).
  12. Macheda, T., Roberts, K. N., Morganti, J. M., Braun, D. J., Bachstetter, A. D. Optimization and validation of a modified radial-arm water maze protocol using a murine model of mild closed head traumatic brain injury. PLoS One. 15 (8), 0232862 (2020).
  13. Macheda, T., Snider, H. C., Watson, J. B., Roberts, K. N., Bachstetter, A. D. An active avoidance behavioral paradigm for use in a mild closed head model of traumatic brain injury in mice. Journal of Neuroscience Methods. 343, 108831 (2020).
  14. Bachstetter, A. D., et al. Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. Journal of Neuroinflammation. 12, 69 (2015).
  15. Bachstetter, A. D., et al. The effects of mild closed head injuries on tauopathy and cognitive deficits in rodents: Primary results in wild type and rTg4510 mice, and a systematic review. Experimental Neurology. 326, 113180 (2020).
  16. Lyons, D. N., et al. A mild traumatic brain injury in mice produces lasting deficits in brain metabolism. Journal of Neurotrauma. 35 (20), 2435-2447 (2018).
  17. Yanckello, L. M., et al. Inulin supplementation mitigates gut dysbiosis and brain impairment induced by mild traumatic brain injury during chronic phase. Journal of Cellular Immunology. 4 (2), 50-64 (2022).
  18. Bachstetter, A. D., et al. Early stage drug treatment that normalizes proinflammatory cytokine production attenuates synaptic dysfunction in a mouse model that exhibits age-dependent progression of Alzheimer’s disease-related pathology. The Journal of Neuroscience. 32 (30), 10201-10210 (2012).
  19. Zvejniece, L., et al. Skull fractures induce neuroinflammation and worsen outcomes after closed head injury in mice. Journal of Neurotrauma. 37 (2), 295-304 (2020).
  20. Flierl, M. A., et al. Mouse closed head injury model induced by a weight-drop device. Nature Protocols. 4 (9), 1328-1337 (2009).
  21. Yang, Z., et al. Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model. Scientific Reports. 5, 11178 (2015).
  22. Petraglia, A. L., et al. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. Journal of Neurotrauma. 31 (13), 1211-1224 (2014).
  23. Laskowitz, D. T., et al. COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. Journal of Neurotrauma. 24 (7), 1093-1107 (2007).
  24. Lloyd, E., Somera-Molina, K., Van Eldik, L. J., Watterson, D. M., Wainwright, M. S. Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. Journal of Neuroinflammation. 5, 28 (2008).
  25. Lillie, E. M., Urban, J. E., Lynch, S. K., Weaver, A. A., Stitzel, J. D. Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. Journal of Bone and Mineral Research. 31 (2), 299-307 (2016).
  26. Kawakami, M., Yamamura, K. Cranial bone morphometric study among mouse strains. BMC Evolutionary Biology. 8, 73 (2008).
check_url/pt/64556?article_type=t&slug=electromagnetic-controlled-closed-head-model-mild-traumatic-brain

Play Video

Citar este artigo
Macheda, T., Roberts, K., Bachstetter, A. D. Electromagnetic Controlled Closed-Head Model of Mild Traumatic Brain Injury in Mice. J. Vis. Exp. (187), e64556, doi:10.3791/64556 (2022).

View Video