Summary

社会隔离模型:压力和焦虑的非侵入性啮齿动物模型

Published: November 11, 2022
doi:

Summary

这里介绍的是一种社会隔离(SI)诱导的焦虑小鼠模型,该模型利用野生型C56BL / 6J小鼠以最少的处理和无侵入性程序诱导压力和焦虑样行为。该模型反映了社会孤立的现代生活模式,是研究焦虑和相关疾病的理想选择。

Abstract

焦虑症是美国(US)残疾的主要原因之一。目前的治疗并不总是有效的,只有不到50%的患者达到完全缓解。开发新型抗焦虑药的关键步骤是开发和利用动物模型(例如小鼠)来研究病理变化并测试药物靶点、疗效和安全性。目前的方法包括基因操作,长期给予焦虑诱导分子或管理环境压力。然而,这些方法可能无法现实地反映日常生活中引起的焦虑。该协议描述了一种新的焦虑模型,该模型模仿了现代生活中有意或无意的社会孤立模式。社会孤立诱导的焦虑模型最大限度地减少了感知到的干扰和侵入性,并利用野生型C57BL / 6小鼠。在该协议中,将6至8周龄的小鼠(雄性和雌性)单独饲养在不透明的笼子中,以视觉上阻挡外部环境,例如邻近的小鼠4周。不提供环境富集(如玩具),垫料减少50%,任何药物处理均以琼脂形式施用,并且尽量减少小鼠的暴露/处理。使用该协议生成的社会孤立小鼠表现出更大的焦虑样行为,攻击性以及认知能力下降。

Introduction

焦虑症是美国精神疾病的最大类别和负担,相关年度成本超过420亿美元123。近年来,焦虑和压力使自杀和自杀意念的患病率提高了 16% 以上4。慢性病患者特别容易受到精神困扰或认知功能下降的意外继发性影响5.目前对焦虑症的治疗包括心理治疗、药物治疗或两者的组合6.然而,尽管存在这种危机,只有不到 50% 的患者达到完全缓解67。苯二氮卓类药物(BZs)和选择性5-羟色胺再摄取抑制剂(SSRIs)等抗焦虑药具有明显的缺点或几乎不产生立竿见影的效果8。此外,正在开发的新型抗焦虑药相对稀缺,受到昂贵且耗时的药物开发过程的挑战910

药物开发过程中的一个关键步骤是建立和利用动物模型,例如小鼠,以研究病理变化并测试药物的安全性和有效性11。目前建立焦虑动物模型的方法包括1)基因操作,例如敲除血清素受体(5-HT1A)或γ-氨基丁酸A受体(GABAAR)α亚基12;2)长期给予焦虑诱导剂,如皮质酮或脂多糖(LPS)1314;或 3) 施加环境压力,包括社会失败和母体分离15.然而,这些方法可能无法真实地反映日常生活中引起的焦虑,因此可能不适合研究潜在机制或测试新药。

像人类一样,老鼠和老鼠是高度社会化的生物161718。社交接触和社交互动对于最佳的大脑健康至关重要,并且对于饲养期间的正常神经发育至关重要19。因此,在饲养期间,母体分离或社会孤立导致小鼠表现出更多的焦虑,抑郁和神经传递的变化20。此外,社交梳理或同种异体整理是生活在一起的小鼠和大鼠之间常见的结合或安慰行为形式21。因此,社会化是啮齿动物生活中不可或缺的一部分,隔离会对它们的健康产生负面影响。

在这种情况下,本协议描述了一种新的焦虑模型,以模仿现代生活中有意或无意的社会孤立模式。这种社会隔离(SI)模型最大限度地减少了感知的干扰和侵入性,并利用了成年野生型C57BL / 6小鼠和Sprague-Dawley(SD)大鼠这里介绍的方案侧重于基于我们发表的证据的焦虑小鼠模型,该模型显示由于社会孤立,焦虑样行为,攻击性,认知能力下降和神经炎症增加222324。焦虑样行为通过升高加迷宫 (EPM) 和开放场地 (OF) 测试得到证实,而认知功能通过新型物体识别 (NOR) 和新型上下文识别 (NCR) 测试来测量。该模型可用于研究焦虑和相关疾病,但也可以调整或修改以研究轻度认知障碍的自然进展和发展以及压力引起的代谢变化。

Protocol

所有动物实验均按照南加州大学(USC)机构动物护理和使用委员会(IACUC)批准的协议进行,所有方法均按照相关指南,法规和建议进行。 1. 动物 获得适当的动物护理委员会的批准以进行研究。 将动物园设置为暗光12小时循环,温度和湿度分别控制在24±2°C和50%-60%之间。 获得6-8周龄的雄性和/或雌性野生型C57BL / 6小鼠。按性别对动物进行分?…

Representative Results

所有具有代表性的结果和数据均根据我们最近的出版物22,23进行了修改。为了评估社会隔离对焦虑和探索行为的影响,在4周的社会隔离期结束后24小时进行了EPM和OF测试。与对照组(2.3±1±0.27分钟)相比,社会孤立小鼠在开放臂上花费的时间(1.280.17分钟)显着减少,并且在闭合臂中的时间(3.31±0.27分钟)与对照组(2.24±0.31分钟)相比(<strong class="xfig…

Discussion

协议中的关键步骤包括正确设置社会隔离笼(即包裹不透明袋子并减少床上用品的数量),在整个隔离期间尽量减少对小鼠的处理和干扰并确保小鼠完全获得和食用琼脂。至关重要的是,将动物饲养场或饲养所的条件保持在恒定的温度和湿度,并尽量减少外部干扰。应付出巨大努力,尽可能减少这些混杂因素,包括但不限于噪音干扰(例如,交谈、设备噪音等)、过度处理和在暗光周期…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作由美国国立卫生研究院拨款AA17991(致J.L.),无忧无虑生物技术基金会(致J.L.),南加州大学(USC),南加州大学研究生院旅行/研究奖(致SW)资助。沙特阿拉伯文化使命奖学金(致AAO)和陆军卫生专业奖学金计划(致ASS)。

Materials

Black Plastic Bags Office Depot 791932 24" x 32"
Elevated Plus Maze SD Instruments NA Black color
Open Field enclosure SD Instruments NA White color
Select Agar Invitrogen 30391-023
Square cotton for nesting (nestlet) Ancare Corporation NC9365966 Divide a 2" square piece into 4 pieces to create a 1" square piece for isolation group
Sucrose Sigma S1888-1KG
Weigh boat SIgma HS1420A Small, square white polystyrene

Referências

  1. Craske, M. G., et al. Anxiety disorders. Nature Reviews Disease Primers. 3 (1), 17024 (2017).
  2. Kasper, S., den Boer, J., Ad Sitsen, J. . Handbook of Depression and Anxiety: A Biological Approach. , (2003).
  3. Konnopka, A., König, H. Economic burden of anxiety disorders: a systematic review and meta-analysis. Pharmacoeconomics. 38 (1), 25-37 (2020).
  4. Batterham, P. J., et al. Effects of the COVID-19 pandemic on suicidal ideation in a representative Australian population sample-Longitudinal cohort study. Journal of Affective Disorders. 300, 385-391 (2022).
  5. Ismail, I. I., Kamel, W. A., Al-Hashel, J. Y. Association of COVID-19 pandemic and rate of cognitive decline in patients with dementia and mild cognitive impairment: a cross-sectional study. Gerontology and Geriatric Medicine. 7, 23337214211005223 (2021).
  6. . NIMH. Anxiety Disorders Available from: https://www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml (2018)
  7. Roy-Byrne, P. Treatment-refractory anxiety; definition, risk factors, and treatment challenges. Dialogues in Clinical Neuroscience. 17 (2), 191-206 (2015).
  8. Cassano, G. B., Baldini Rossi, N., Pini, S. Psychopharmacology of anxiety disorders. Dialogues in Clinical Neuroscience. 4 (3), 271-285 (2002).
  9. Garakani, A., et al. Pharmacotherapy of anxiety disorders: current and emerging treatment options. Frontiers in Psychiatry. 11, 595584 (2020).
  10. Hutson, P. H., Clark, J. A., Cross, A. J. CNS target identification and validation: avoiding the valley of death or naive optimism. Annual Review of Pharmacology and Toxicology. 57 (1), 171-187 (2017).
  11. Hart, P. C., Proetzel, G., Wiles, M. V., et al. Experimental models of anxiety for drug discovery and brain research. Mouse Models for Drug Discovery: Methods and Protocols. , 271-291 (2016).
  12. Scherma, M., Giunti, E., Fratta, W., Fadda, P. Gene knockout animal models of depression, anxiety and obsessive compulsive disorders. Psychiatric Genetics. 29 (5), 191-199 (2019).
  13. Liu, W. -. Z., et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nature Communications. 11 (1), 2221 (2020).
  14. Zheng, Z. -. H., et al. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain, Behavior, and Immunity. 91, 505-518 (2021).
  15. Toth, I., Neumann, I. D. Animal models of social avoidance and social fear. Cell and Tissue Research. 354 (1), 107-118 (2013).
  16. Wang, F., Kessels, H. W., Hu, H. The mouse that roared: neural mechanisms of social hierarchy. Trends in Neurosciences. 37 (11), 674-682 (2014).
  17. Endo, N., et al. Multiple animal positioning system shows that socially-reared mice influence the social proximity of isolation-reared cagemates. Communications Biology. 1 (1), 225 (2018).
  18. Netser, S., et al. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nature Communications. 11 (1), 5908 (2020).
  19. Krimberg, J. S., Lumertz, F. S., Orso, R., Viola, T. W., de Almeida, R. M. M. Impact of social isolation on the oxytocinergic system: A systematic review and meta-analysis of rodent data. Neuroscience & Biobehavioral Reviews. 134, 104549 (2022).
  20. Mumtaz, F., Khan, M. I., Zubair, M., Dehpour, A. R. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomedicine & Pharmacotherapy. 105, 1205-1222 (2018).
  21. Ranade, S. Comforting in mice. Nature Neuroscience. 24 (12), 1640 (2021).
  22. Al Omran, A. J., et al. Social isolation induces neuroinflammation and microglia overactivation, while dihydromyricetin prevents and improves them. Journal of Neuroinflammation. 19 (1), 2 (2022).
  23. Watanabe, S., et al. Dihydromyricetin improves social isolation-induced cognitive impairments and astrocytic changes in mice. Scientific Reports. 12 (1), 5899 (2022).
  24. Silva, J., et al. Modulation of hippocampal GABAergic neurotransmission and gephyrin levels by dihydromyricetin improves anxiety. Frontiers in Pharmacology. 11, 1008 (2020).
  25. Porter, V. R., et al. Frequency and characteristics of anxiety among patients with Alzheimer’s disease and related dementias. Journal of Neuropsychiatry and Clinical Neuroscience. 15 (2), 180-186 (2003).
  26. Hossain, M. M., et al. Prevalence of anxiety and depression in South Asia during COVID-19: A systematic review and meta-analysis. Heliyon. 7 (4), 06677 (2021).
  27. . NHGRI. Knockout Mice Fact Sheet Available from: https://www.genome.gov/about-genomics/fact-sheets/Knockout-Mice-Fact-Sheet (2020)
  28. Takahashi, A. Social stress and aggression in murine models. Current Topics in Behavioral Neuroscience. 54, 181-208 (2022).
  29. Lam, R. W. Challenges in the treatment of anxiety disorders: beyond guidelines. International Journal of Psychiatry in Clinical Practice. 10, 18-24 (2006).
  30. Sullens, D. G., et al. Social isolation induces hyperactivity and exploration in aged female mice. PLoS One. 16 (2), 0245355 (2021).
check_url/pt/64567?article_type=t

Play Video

Citar este artigo
Watanabe, S., Al Omran, A., Shao, A. S., Liang, J. Social Isolation Model: A Noninvasive Rodent Model of Stress and Anxiety. J. Vis. Exp. (189), e64567, doi:10.3791/64567 (2022).

View Video