Summary

使用液相色谱-串联质谱分析原发性痛经大鼠的原始和加工的Cyperi Rhizoma样品

Published: December 23, 2022
doi:

Summary

在这里,使用超高效液相色谱-高分辨率串联质谱(UPLC-MS/MS)对原发性痛经大鼠的原始和加工的Cyperi rhizoma(CR)样品进行了比较分析。检查CR处理的大鼠和醋处理的CR(CRV)大鼠之间代谢物和样品成分的血液水平变化。

Abstract

根瘤(CR)广泛用于妇科,是我国治疗妇女疾病的全科药物。由于用醋加工后CR的镇痛作用增强,因此临床上一般采用醋处理的CR(CRV)。然而,醋加工增强镇痛作用的机制尚不清楚。本研究采用超高压液相色谱串联质谱(UPLC-MS/MS)技术检测CR处理和CRV处理痛经大鼠外源成分和代谢物血液水平的变化。结果显示,这些大鼠血液中的15种成分和两种代谢物含量不同。其中,CRV组的(-)-肉豆蔻醇和[(1R,2S,3R,4R)-3-羟基-1,4,7,7-四甲基双环[2.2.1]庚-2-基]乙酸水平明显高于CR组。CRV降低具有促炎、血小板聚集和血管收缩活性的2系列前列腺素和4系列白三烯的水平,并通过调节花生四烯酸和亚油酸代谢以及不饱和脂肪酸的生物合成提供镇痛作用。本研究表明,醋加工增强了CR的镇痛作用,有助于我们了解CRV的作用机制。

Introduction

原发性痛经(PD)是临床妇科中最普遍的疾病。它的特征是月经前或月经期间背痛、肿胀、腹痛或不适,生殖系统中没有盆腔病变1.一份关于其患病率的报告显示,85.7%的学生患有PD2。低剂量口服避孕药是标准疗法,但其不良副作用,如深静脉血栓形成,引起了越来越多的关注3。口服避孕药使用者深静脉血栓形成的患病率为每 1,000 名妇女 >1 例,在最初 6-12 个月和 40 岁以上的使用者中风险最高4

长期用于传统中药(TCM),Cyperi rhizoma(CR)来源于Cyperaceae家族Cyperus rotundus L.的干燥根茎。CR调节月经紊乱,缓解抑郁和疼痛5.CR广泛用于妇科,被认为是治疗女性疾病的普通药物6。用醋(CRV)加工的CR通常用于临床。与CR相比,CRV显示出对月经和疼痛缓解的增强调节。现代研究表明,CR抑制环氧合酶-2(COX-2)和随后前列腺素(PGs)的合成,从而达到抗炎作用。同时,CR表现出无副作用的镇痛作用7,使CR成为痛经患者的不错选择。然而,CRV调节月经和缓解疼痛的机制尚不清楚。CR研究主要集中在其活性化学成分和药理活性的变化,如其抗炎,抗抑郁和镇痛作用89,101112

虽然中医的成分很复杂,但它们被吸收到血液中,必须达到特定的血液浓度才能有效13。通过利用血液中成分测定的策略,可以缩小中药活性成分的筛选范围。在体外研究化学成分时可以避免盲目,在研究单个成分时可以避免片面性14。通过比较血液中CR和CRV的组成,可以有效,快速地检测处理后的CR活性成分的变化。药物功效是药物影响身体的过程。由于身体的代谢反应引起的药物成分的变化,可能与药物的作用机制有关,可以用代谢组学来确定。代谢组学旨在测量整体和动态代谢反应,这与确定中药的整体疗效一致15。此外,代谢物是基因表达的最终产物,与表型16最密切相关。因此,代谢组学可能适用于探索CR和CRV在PD治疗中的代谢途径的差异。 基于液相色谱-高分辨率串联质谱(LC-MS/MS)的非靶向代谢组学具有高通量、高灵敏度和高分辨率的特点,可用于测量许多不同的小分子成分1718.该方法可以同时测定吸收到血液中的内源性代谢物和外源性成分。代谢组学已广泛应用于中医19、药物毒理学20、健康管理21、运动22、食品23等领域。

本研究采用基于LC-MS/MS的非靶向代谢组学,测定CR处理和CRV治疗痛经模型大鼠血液中吸收的外源成分和内源性代谢物的差异,揭示CRV镇痛作用的机制。

Protocol

所有与动物有关的实验均经重庆中医药研究院实验伦理委员会批准进行。本实验使用了24只8-10周龄,体重200克±20克的雌性Sprague Dawley大鼠(SD)。 1. 提取的准备 计算计划将CR或CRV提取物施用于六只Sprague-Dawley大鼠(10g / [kg∙day])的治疗组3天。使用浓度为 1 g/mL 的 CR 或 CRV 提取物(1 mL 提取物来自 1 g 草药)。注意:CR的剂量为6-10克。在这项研究中?…

Representative Results

痛经模型实验分析对照组30分钟内无扭动反应,因为这些大鼠未腹腔注射催产素和苯甲酸雌二醇引起疼痛。模型组、CR组和CRV组的大鼠在注射催产素后表现出大量的扭动反应。这些结果证明了苯甲酸雌二醇和催产素联合用药诱导痛经的疗效。模型组和对照组之间PGF 2α、PGE 2和PGF2α/PGE2水平的差异显著(P < 0.001,P < 0.05),证明了 模型的有效性(…

Discussion

由于中药种类繁多,性质各异,这些中药材有时在临床上不起作用,这可能是由于中药加工和煎煮不当造成的。随着当代科学技术的使用,中医的机制变得越来越明显2930.本研究表明,CR和CRV均对PD模型大鼠具有治疗效果,且CRV的治疗效果更为显著。CRV的作用机制可能与醋加工可能影响被吸收到血液中的CR成分有关,并且可能与亚油酸代谢和不饱和脂肪…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了重庆市卫生和计划生育委员会中医药科技项目(项目编号:ZY201802297)、重庆市自然科学基金面上项目(项目编号:cstc2019jcyj-msxmX065)、重庆市现代山区特色高效农业科技体系创新团队建设规划2022[10]、重庆市卫生健康委员会中药重点学科建设项目的支持。 医药加工。

Materials

Acetonitrile  Fisher Scientific, Pittsburg, PA, USA 197164
BECKMAN COULTER Microfuge 20 Beckman Coulter, Inc. MRZ15K047
Estradiol benzoate Shanghai Macklin Biochemical Co., Ltd C10042616
formic acid Fisher Scientific, Pittsburg, PA, USA 177799
LC 30A system Shimadzu, Kyoto, Japan 228-45162-46
Olive oil Shanghai Yuanye Biotechnology Co., Ltd H25A11P111909
Oxytocin synthetic Zhejiang peptide biology Co., Ltd  2019092001
Rat PGF2α ELISA kit Shanghai lmai Bioengineering Co., Ltd 202101
Rat PGFE2 ELISA kit Shanghai lmai Bioengineering Co., Ltd EDL202006217
SPF Sprague-Dawley rats Hunan SJA Laboratory Animal Co., Ltd Certificate number SCXK (Hunan) 2019-0004
Tecan Infinite 200 PRO   Tecan Austria GmbH, Austria 1510002987
Triple TOF 4600 system SCIEX, Framingham, MA, USA BK20641402
water Fisher Scientific, Pittsburg, PA, USA 152720

Referências

  1. Yu, W. Y., et al. Acupuncture for primary dysmenorrhea: A potential mechanism from an anti-inflammatory perspective. Evidence-Based Complementary and Alternative. 2021, 1907009 (2021).
  2. Rafique, N., Al-Sheikh, M. H. Prevalence of primary dysmenorrhea and its relationship with body mass index. Journal of Obstetrics and Gynaecology Research. 44 (9), 1773-1778 (2018).
  3. Tong, H., et al. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine. 86, 153558 (2021).
  4. Ferries-Rowe, E., Corey, E., Archer, J. S. Primary dysmenorrhea: Diagnosis and therapy. Obstetrics & Gynecology. 136 (5), 1047-1058 (2020).
  5. Lu, J., et al. The association study of chemical compositions and their pharmacological effects of Cyperi Rhizoma (Xiangfu), a potential traditional Chinese medicine for treating depression. Journal of Ethnopharmacology. 287, 114962 (2021).
  6. Lu, J., et al. Quality status analysis and intrinsic connection research of growing place, morphological characteristics, and quality of Chinese medicine: Cyperi Rhizoma (Xiangfu) as a case study. Evidence-Based Complementary and Alternative. 2022, 8309832 (2022).
  7. Taheri, Y., et al. Cyperus spp.: A review on phytochemical composition, biological activity, and health-promoting effects. Oxidative Medicine and Cellular Longevity. 2021, 4014867 (2021).
  8. El-Wakil, E. A., Morsi, E. A., Abel-Hady, H. Phytochemical screening, antimicrobial evaluation and GC-MS analysis of Cyperus rotundus. World Journal Of Pharmacy And Pharmaceutical Sciences. 8 (9), 129-139 (2019).
  9. Rocha, F. G., et al. Preclinical study of the topical anti-inflammatory activity of Cyperus rotundus L. extract (Cyperaceae) in models of skin inflammation. Journal of Ethnopharmacology. 254, 112709 (2020).
  10. Hao, G., Tang, M., Wei, Y., Che, F., Qian, L. Determination of antidepressant activity of Cyperus rotundus L extract in rats. Tropical Journal of Pharmaceutical Research. 16 (4), 867-871 (2017).
  11. Kakarla, L., et al. Free radical scavenging, α-glucosidase inhibitory and anti-inflammatory constituents from Indian sedges, Cyperus scariosus R.Br and Cyperus rotundus L. Pharmacognosy Magazine. 12 (47), 488-496 (2016).
  12. Shakerin, Z., et al. Effects of Cyperus rotundus extract on spatial memory impairment and neuronal differentiation in rat model of Alzheimer’s disease. Advanced Biomedical Research. 9 (1), 17-24 (2020).
  13. Li, J., et al. Pharmacokinetics of caffeic acid, ferulic acid, formononetin, cryptotanshinone, and tanshinone IIA after oral Administration of naoxintong capsule in rat by HPLC-MS/MS. Evidence-Based Complementary and Alternative. 2017, 9057238 (2017).
  14. Zhang, A., et al. Metabolomics: Towards understanding traditional Chinese medicine. Planta Medica. 76 (17), 2026-2035 (2010).
  15. Li, L., Ma, S., Wang, D., Chen, L., Wang, X. Plasma metabolomics analysis of endogenous and exogenous metabolites in the rat after administration of Lonicerae Japonicae Flos. Biomedical Chromatography. 34 (3), 4773 (2020).
  16. Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E., Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nature Biotechnology. 36 (4), 316-320 (2018).
  17. Hu, L., et al. Functional metabolomics decipher biochemical functions and associated mechanisms underlie small-molecule metabolism. Mass Spectrometry Reviews. 39 (5-6), 417-433 (2020).
  18. Cui, L., Lu, H., Lee, Y. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrometry Reviews. 37 (6), 772-792 (2018).
  19. Liu, F., et al. Metabonomics study on the hepatoprotective effect of Panax notoginseng leaf saponins using UPLC/Q-TOF-MS analysis. The American Journal of Chinese Medicine. 47 (3), 559-575 (2019).
  20. Zhao, L., Hartung, T. Metabonomics and toxicology. Methods in Molecular Biology. 1277, 209-231 (2015).
  21. Martin, F. J., Montoliu, I., Kussmann, M. Metabonomics of ageing – Towards understanding metabolism of a long and healthy life. Mechanisms of Ageing and Development. 165, 171-179 (2017).
  22. Heaney, L. M., Deighton, K., Suzuki, T. Non-targeted metabolomics in sport and exercise science. Journal of Sports Sciences. 37 (9), 959-967 (2019).
  23. Yang, Y., et al. Metabonomics profiling of marinated meat in soy sauce during processing. Journal of the Science of Food and Agriculture. 98 (4), 1325-1331 (2018).
  24. Xu, S. Y. . Methodology of Pharmacological Experiment. , (2002).
  25. Ma, B., et al. An integrated study of metabolomics and transcriptomics to reveal the anti-primary dysmenorrhea mechanism of Akebiae Fructus. Journal of Ethnopharmacology. 270, 113763 (2021).
  26. Li, X., et al. Regulation of mild moxibustion on uterine vascular and prostaglandin contents in primary dysmenorrhea rat model. Evidence-Based Complementary and Alternative. 2021, 9949642 (2021).
  27. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry. 73 (3), 779-787 (2006).
  28. Wang, D., et al. UPLC-MS/MS-based rat serum metabolomics reveals the detoxification mechanism of Psoraleae Fructus during salt processing. Evidence-Based Complementary and Alternative Medicine. 2021, 5597233 (2021).
  29. Wang, X., et al. Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with hypobaric hypoxia-induced brain injury by regulating the HIF-1α/microRNA 210/ISCU1/2(COX10) signaling pathway. Journal of Ethnopharmacology. 241, 111801 (2019).
  30. Xie, H., et al. Raw and vinegar processed Curcuma wenyujin regulates hepatic fibrosis via bloking TGF-β/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. Journal of Ethnopharmacology. 246, 111768 (2020).
  31. Jung, S. H., et al. α-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NFkappaB signalling in RAW 264.7 cells. Journal of Ethnopharmacology. 147 (1), 208-214 (2013).
  32. Dantas, L. B. R., et al. Nootkatone inhibits acute and chronic inflammatory responses in mice. Molecules. 25 (9), 2181 (2020).
  33. Xu, Y., et al. Nootkatone protects cartilage against degeneration in mice by inhibiting NF- κB signaling pathway. International Immunopharmacology. 100, 108119 (2021).
  34. Heimfarth, L., et al. Characterization of β-cyclodextrin/myrtenol complex and its protective effect against nociceptive behavior and cognitive impairment in a chronic musculoskeletal pain model. Carbohydrate Polymers. 244, 116448 (2020).
  35. Viana, A., et al. (-)-Myrtenol accelerates healing of acetic acid-induced gastric ulcers in rats and in human gastric adenocarcinoma cells. European Journal of Pharmacology. 854, 139-148 (2019).
  36. Bejeshk, M. A., et al. Anti-inflammatory and anti-remodeling effects of myrtenol in the lungs of asthmatic rats: Histopathological and biochemical findings. Allergologia et Immunopathologica. 47 (2), 185-193 (2019).
  37. Christie, W. W., Harwood, J. L. Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays in Biochemistry. 64 (3), 401-421 (2020).
  38. Wiktorowska-Owczarek, A., Berezinska, M., Nowak, J. Z. PUFAs: Structures, metabolism and functions. Advances in Clinical and Experimental. 24 (6), 931-941 (2015).
  39. Araujo, P., et al. The effect of omega-3 and omega-6 polyunsaturated fatty acids on the production of cyclooxygenase and lipoxygenase metabolites by human umbilical vein endothelial cells. Nutrients. 11 (5), 966 (2019).
  40. Shahidi, F., Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology. 9, 345-381 (2018).
  41. Meier, S., Ledgard, A. M., Sato, T. A., Peterson, A. J., Mitchell , M. D. Polyunsaturated fatty acids differentially alter PGF(2α) and PGE2 release from bovine trophoblast and endometrial tissues during short-term culture. Animal Reproduction Science. 111 (2), 353-360 (2009).
  42. Cheng, Z., et al. Altering n-3 to n-6 polyunsaturated fatty acid ratios affects prostaglandin production by ovine uterine endometrium. Animal Reproduction Science. 143 (1-4), 38-47 (2013).
  43. Sultan, C., Gaspari, L., Paris, F. Adolescent dysmenorrhea. Endocrine Development. 22, 171-180 (2012).
  44. Zeev, H. M. D., Craig, L. M. D., Suzanne, R. M. D., Rosalind, V. M. D., Jeffrey, D. M. D. Urinary leukotriene (LT) E4 in adolescents with dysmenorrhea: A pilot study. Journal of Adolescent Health. 27 (3), 151-154 (2000).
  45. Fajrin, I., Alam, G., Usman, A. N. Prostaglandin level of primary dysmenorrhea pain sufferers. Enfermería Clínica. 30, 5-9 (2020).
  46. Iacovides, S., Avidon, I., Baker, F. C. What we know about primary dysmenorrhea today: a critical review. Human Reproduction Update. 21 (6), 762-778 (2015).
  47. Barcikowska, Z., Rajkowska-Labon, E., Grzybowska, M. E., Hansdorfer-Korzon, R., Zorena , K. Inflammatory markers in dysmenorrhea and therapeutic options. International Journal of Environmental Research and Public Health. 17 (4), 1191 (2020).
  48. Wang, T., et al. Arachidonic acid metabolism and kidney inflammation. International Journal of Molecular Science. 20 (15), 3683 (2019).
  49. Szczuko, M., et al. The role of arachidonic and linoleic acid derivatives in pathological pregnancies and the human reproduction process. International Journal of Molecular Sciences. 21 (24), 9628 (2020).
  50. Serrano-Mollar, A., Closa, D. Arachidonic acid signaling in pathogenesis of allergy: Therapeutic implications. Current Drug Targets-Inflammation and Allergy. 4 (2), 151-155 (2005).
  51. Toit, R. L., Storbeck, K. H., Cartwright, M., Cabral, A., Africander, D. Progestins used in endocrine therapy and the implications for the biosynthesis and metabolism of endogenous steroid hormones. Molecular and Cellular Endocrinology. 441, 31-45 (2017).
  52. Ghayee, H. K., Auchus, R. J. Basic concepts and recent developments in human steroid hormone biosynthesis. Reviews in Endocrine and Metabolic Disorders. 8 (4), 289-300 (2007).
  53. Liang, J. J., Rasmusson, A. M. Overview of the molecular steps in steroidogenesis of the GABAergic neurosteroids allopregnanolone and pregnanolone. Chronic Stress. 2, 2470547018818555 (2018).
  54. Pettus, B. J., et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. The FASEB Journal. 17 (11), 1411-1421 (2003).
  55. Zeidan, Y. H., et al. Acid ceramidase but not acid sphingomyelinase is required for tumor necrosis factor-α-induced PGE2 production. Journal of Biological Chemistry. 281 (34), 24695-24703 (2006).
  56. Kawamori, T., et al. Role for sphingosine kinase 1 in colon carcinogenesis. The FASEB Journal. 23 (2), 405-414 (2009).
  57. Hannun, Y. A., Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology. 19 (3), 175-191 (2018).
check_url/pt/64691?article_type=t

Play Video

Citar este artigo
Chen, Y., Li, N., Wang, D., Fan, J., Chu, R., Li, S. Analysis of Raw and Processed Cyperi Rhizoma Samples Using Liquid Chromatography-Tandem Mass Spectrometry in Rats with Primary Dysmenorrhea. J. Vis. Exp. (190), e64691, doi:10.3791/64691 (2022).

View Video