Summary

复合盐胁迫对辣椒种子萌发的影响及耐盐性分析

Published: November 30, 2022
doi:

Summary

下面的论文介绍了一种方案,用于测量两种辣椒品种的种子萌发、幼苗生长和生理指标,这些品种在响应六种混合盐浓度时具有耐盐性差异。该协议可用于评估辣椒品种的耐盐性。

Abstract

为确定辣椒在萌发期的耐盐性和生理机制,以耐盐性差异较大的红天湖101和新乡8品种为研究材料。使用六种 0、3、5、10、15 和 20 g/L 的混合盐浓度,使用等摩尔比得出的 Na 2 CO 3、NaHCO3、NaCl、CaCl 2、MgCl 2、MgSO4 和 Na 2SO4为确定其效果,测定种子萌发、幼苗生长和生理等相关指标,并利用隶属函数分析对耐盐性进行综合评价。结果表明:随着混合盐浓度的增加,两个品种的萌发势、发芽指数、发芽率、种子萌发活力指数、根长和根鲜重显著降低,而相对盐率逐渐增加;地上下胚轴长度和鲜重先增加后降低,丙二醛(MDA)、脯氨酸(Pro)含量、过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性先降低后增加。红天湖101种子的发芽势、发芽指数、萌发率、种子萌发活力指数、根长、根鲜重、MDA和Pro含量以及CAT活性均高于新乡8号。但红天湖101的下胚轴长度、地上鲜重和相对盐率均低于新乡8号。耐盐性综合评价表明,随着混合盐浓度的增加,两个隶属函数指标的总加权值先增大后减小。与隶属函数值最高的5 g/L相比,盐浓度为3 g/L、10 g/L和15 g/L的指数分别降低了4.7%—11.1%、25.3%—28.3%和41.4%—45.1%。本研究为耐盐辣椒品种的选育提供了理论指导,分析了耐盐和耐盐栽培的生理机制。

Introduction

盐度是全球作物生产力的主要限制因素1.目前,世界上近19.5%的灌溉土地和2.1%的旱地受到盐碱化的影响,每年约有1%的农田退化为盐碱地。到2050年,预计50%的耕地将受到盐碱化的影响23。除了自然因素,如天然岩石风化和沿海附近或周围的咸雨水,地表蒸发快,降雨量少,农业管理方法不合理,加剧了土壤盐碱化的过程。土壤盐碱化抑制了植物根系的生长,并减少了水分和养分从植物根部到叶子的吸收和运输。这种抑制导致生理性缺水、营养失衡和离子毒性,导致作物产量下降和作物产量完全丧失。耕地盐碱化正逐渐成为影响全球农业粮食生产的最关键的非生物胁迫因素之一4.盐胁迫减少了可用于农业的耕地,这可能导致未来农产品供需之间的严重不平衡。因此,探讨土壤盐渍化对作物生长的影响及生理生化机制,有利于培育耐盐品种、盐渍土可持续利用和农产品安全。

辣椒(辣椒 L.)因其高营养和药用价值而在世界各地种植。例如,辣椒素是一种生物碱,负责胡椒的辛辣味。辣椒素可用于缓解疼痛, 减肥, 改善心血管, 胃肠道, 和呼吸系统, 以及其他几种应用.胡椒还富含生物活性物质,尤其是不同的抗氧化化合物(类胡萝卜素、酚类和类黄酮)和维生素C 6。目前,据报道,辣椒是我国种植面积最大的蔬菜作物,年种植面积超过1.5×106 公顷,占我国蔬菜种植总面积的8%-10%。辣椒产业已成为我国最大的蔬菜产业之一,产值最高7。然而,辣椒栽培经常受到多种生物(害虫和真菌)和非生物胁迫,特别是盐胁迫,对种子萌发、生长和发育有直接的负面影响,导致辣椒果实产量和品质下降8.

种子萌发是植物与环境相互作用的第一阶段。种子萌发对周围介质的波动高度敏感,特别是土壤盐胁迫可能对生理和代谢产生逆转作用,最终扰乱作物的正常生长、发育和形态发生9。在以往的研究中,广泛研究了盐胁迫下辣椒种子的萌发和幼苗生长;然而,大多数研究使用NaCl作为诱导应力的唯一盐101112。然而,土壤盐害主要是由于钠盐、钙盐和镁盐解离产生的Na+、Ca2+、Mg2+、Cl-、CO3 2-和SO4 2离子毒性。由于离子之间的协同作用和拮抗作用,混合盐和单一盐对作物生长发育的影响可能大不相同。然而,辣椒种子在混合盐中萌发和生长的相应特征尚不清楚。因此,本研究以耐盐性差异显著的2个辣椒品种为材料。分析7种盐等摩尔混合后不同盐浓度对辣椒种子萌发、生长及生理生化指标的影响,可以揭示辣椒种子萌发对盐胁迫的响应机制。还可为强壮辣椒幼苗的栽培以及盐碱耕地的高产优质栽培提供理论依据。

Protocol

注意:本文提出了一种评估不同混合盐胁迫下辣椒种子萌发和幼苗生长的响应特征和内部机制的协议,可作为种子耐盐性评估的参考方法。 1. 实验准备 为栽培品种准备作物种子——耐盐性强的红天湖101和低耐盐的新乡8号。 制备0.2%KMnO4 溶液作为种子消毒试剂。首先,称取 4.0 g KMnO4,然后加入 2,000 mL 蒸馏水。注意:高锰酸钾由?…

Representative Results

种子萌发特性随着混合盐浓度的增加,红天湖101和新乡8的发芽势和发芽指数显著降低。两个品种的盐浓度从0-3 g/L急剧下降,盐浓度从3-20 g/L缓慢而稳定地下降(图1A,B)。随着混合盐浓度的增加,两个品种的发芽率逐渐降低,而品种的相对盐率逐渐增加。在3-15 g/L盐浓度下,发芽率和相对盐率无显著差异。然而,在所有其他盐浓度下,差异是显?…

Discussion

该研究方法包括影响实验结果准确性的四个关键步骤。首先,由于高盐浓度溶液中溶质含量增加导致混合盐溶解不良,以及氯化钙等试剂在水中更难溶解的溶解度低,因此称量的试剂必须在研钵中充分研磨。此外,在确定容量之前,必须 通过超声波溶解 试剂。其次,每次必须完全摇动配置的盐溶液,并将其添加到培养皿中以供使用。第三,培养皿加入盐溶液后必须保留合适的水层,每个?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了江西省科技厅(20203BBFL63065)和江西省教育厅科技研究项目(GJJ211430)的支持。我们要感谢意得辑(www.editage.cn)的英文编辑。

Materials

Calcium chloride Shanghai Experiment Reagent Co., Ltd.,China Analytical reagent
Centrifugal machine Shanghai Luxianyi Centrifuge Instrument Co., Ltd., China TGL-16M
Centrifuge tube None None
Conductivity meter Shanghai Instrument&Electronics Science Instrument Co., Ltd., China DDSJ-308F
Constant temperature and humidity box Ningbo Laifu Technology Co., Ltd.,China PSX-280H
Digital display vernier caliper Deli Group Co., Ltd.,China DL90150
Electronic balance Mettler Toledo Instruments (Shanghai) Co., Ltd.,China ME802E/02
Filter paper Hangzhou Fuyang North Wood Pulp and Paper Co., Ltd.,China GB/T1914-2017
Grinding rod None None
Hongtianhu  101 Seminis Seed (Beijing) Co., Ltd.,China 11933955/100147K1-137
Ice machine Shanghai Kehuai Instrument Co., Ltd., China IM150G
Liquid nitrogen None None
Magnesium chloride Tianjin Kermel Chemical Reagent Co., Ltd.,China Analytical reagent
Magnesium sulfate Tianjin Kermel Chemical Reagent Co., Ltd.,China Analytical reagent
Petri dish Jiangsu Yizhe Teaching Instrument Co., Ltd.,China I-000163
Pocket knife None None
Potassium permanganate (KMnO4 Xilong Scientific Co.,Ltd.,China Analytical reagent
Pure water equipment Sichuan Youpu Ultrapure Technology Co., Ltd.,China UPT-I-20T
Sodium bicarbonate Xilong Scientific Co.,Ltd.,China Analytical reagent
Sodium carbonate Xilong Scientific Co.,Ltd.,China Analytical reagent
Sodium chloride Xilong Scientific Co.,Ltd.,China Analytical reagent
Sodium sulfate  Xilong Scientific Co.,Ltd.,China Analytical reagent
Test kit Suzhou Keming, Biotechnology Co., Ltd, Suzhou.,China Spectrophotometer method
Ultra-low temperature freezer SANYO Techno Solution TottoriCo.,Ltd. MDF-382
Ultraviolet visible spectrophotometer Shanghai Precision Scientific Instrument Co., Ltd., China  760CRT
Xinxiang 8 Jiangxi Nongwang High Tech Co., Ltd.,China GPD Pepper 2017(360013)

Referências

  1. Szabolcs, I. Soils sand salinisation. Handbook of Plant and Crop Stress. , 3-11 (1994).
  2. Lakhdar, A., et al. Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials. 171 (1-3), 29-37 (2009).
  3. Cheng, Z., Chen, Y., Zhang, F. Effect of cropping systems after abandoned salinized farmland reclamation on soil bacterial communities in arid northwest China. Soil and Tillage Research. 187, 204-213 (2019).
  4. Shrivastava, P., Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22 (2), 123-131 (2015).
  5. Fattori, V., Hohmann, M. S., Rossaneis, A. C., Pinho-Ribeiro, F. A., Verri, W. A. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules. 21 (7), 844-878 (2016).
  6. Zhao, Z., et al. Investigation, collection and identification of pepper germplasm resources in Guangxi. Journal of Plant Genetic .Resources. 21 (4), 908-913 (2020).
  7. Zhang, J., et al. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil and Tillage Research. 195, 104372-104381 (2019).
  8. Ashraf, M., Foolad, M. R. Pre-sowing seed treatment-A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy. 88, 223-271 (2005).
  9. Esra, K. O. &. #. 1. 9. 9. ;., Üstün, A. S., İşlek, C., Arici, Y. K. Effect of exogenously applied spermine and putrescine on germination and in vitro growth of pepper (Capsicum annuum l.) seeds under salt stress. Anadolu University Journal of Science and Technology C-Life Sciences and Biotechnology. 3 (2), 63-71 (2014).
  10. Demir, I., Mavi, K. Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Brazilian Archives of Biology and Technology. 51 (5), 897-902 (2008).
  11. Khan, H. A., et al. Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil and Environment. 28 (1), 81-87 (2009).
  12. Zhou, L. L. Effects of salinity stress on cotton (Gossypium hirsutum L.) root growth and cotton field soil micro-ecology. Nanjing Agricultural University. , (2010).
  13. Ding, D. X., et al. Exogenous zeaxanthin alleviates low temperature combined with low light induced photosynthesis inhibition and oxidative stress in pepper (Capsicum annuum L.) plants. Current Issues in Molecular Biology. 44 (6), 2453-2471 (2022).
  14. Liu, Z. B., Yang, B. Z., Ou, L. J., Zou, X. X. The impact of different Ca2+ spraying period on alleviating pepper injury under the waterlogging stress. Acta Horticulturae Sinica. 42 (8), 1487-1494 (2015).
  15. Aloui, H., Souguir, M., Latique, S., Hannachi, C. Germination and growth in control and primed seeds of pepper as affected by salt stress. Cercetări agronomice în Moldova. 47 (3), 83-95 (2014).
  16. Zhani, K., Elouer, M. A., Aloui, H., Hannachi, C. Selection of a salt tolerant Tunisian cultivar of chili pepper (Capsicum frutescens). EurAsian Journal of Biosciences. 6, 47-59 (2012).
  17. Patanè, C., Saita, A., Sortino, O. Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. Journal of Agronomy and Crop Science. 199 (1), 30-37 (2013).
  18. Smith, P. T., Cobb, B. G. Accelerated germination of pepper seed by priming with salt solutions and water. Hortscience. 26 (4), 417-419 (2019).
  19. Mirosavljević, M., et al. Maize germination parameters and early seedlings growth under different levels of salt stress. Ratarstvo i Povrtarstvo. 50 (1), 49-53 (2013).
  20. Khan, H. A., et al. Hormonal priming alleviates salt stress in hot pepper (Capsicum annuum L.). Soil and Environment. 28 (2), 130-135 (2009).
  21. Zhang, B. B., et al. Effects of simulated salinization on seed germination and physiological characteristics of muskmelon seedlings. Chinese Journal of Tropical Crops. 41 (5), 912-920 (2020).
  22. Guzmán-Murillo, M. A., Ascencio, F., Larrinaga-Mayoral, J. A. Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma. 250 (1), 33-42 (2013).
  23. Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., Savoure, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany. 115 (3), 433-447 (2015).
  24. Muchate, N. S., Nikalje, G. C., Rajurkar, N. S., Suprasanna, P., Nikamd, T. D. Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora. 224, 96-105 (2016).
  25. Javed, S. A., et al. Can different salt formulations revert the depressing effect of salinity on maize by modulating plant biochemical attributes and activating stress regulators through improved N supply. Sustainability. 13 (14), 8022-8037 (2021).
  26. Chen, J., et al. Effects of salt stress on form of polyamine and antioxidation in germinating tomato seed. Acta Pedologica Sinica. 58 (6), 1598-1609 (2021).
check_url/pt/64702?article_type=t

Play Video

Citar este artigo
Cheng, C., Liu, J., Wang, Z., Liu, J., Wang, Y., Liao, Y., Gao, Z., Lu, Z., Zhu, B., Yao, F. Analysis of Effect of Compound Salt Stress on Seed Germination and Salt Tolerance Analysis of Pepper (Capsicum annuum L.). J. Vis. Exp. (189), e64702, doi:10.3791/64702 (2022).

View Video