Summary

利用土壤密度分馏分离不同的土壤碳库

Published: December 16, 2022
doi:

Summary

土壤密度分馏将土壤有机质分离到具有不同稳定机制、化学成分和周转时间的不同池中。具有特定密度的聚钨酸钠溶液允许分离游离颗粒有机物和矿物相关有机物,从而产生适合描述土壤对管理和气候变化响应的有机物部分。

Abstract

土壤有机质(SOM)是不同化合物的复杂混合物,其范围从游离的,部分降解的植物成分到土壤聚集体中保存的更多微生物改变的化合物,再到与活性土壤矿物质密切相关的高度加工的微生物副产品。土壤科学家一直在努力寻找将土壤分离成易于测量且可用于土壤碳(C)建模的部分的方法。基于密度的分馏土壤越来越多地被使用,并且易于执行,并根据SOM与不同矿物之间的关联程度产生C池;因此,土壤密度分级有助于表征SOM并确定SOM稳定机制。然而,报告的土壤密度分馏方案差异很大,使得不同研究和生态系统的结果难以比较。在这里,我们描述了一种强大的密度分馏程序,该程序可以分离颗粒和与矿物质相关的有机物,并解释将土壤分离成两个,三个或更多密度部分的优缺点。这些馏分通常在其化学和矿物组成、周转时间和微生物加工程度以及矿物稳定程度方面有所不同。

Introduction

土壤是最大的陆地碳(C)储存量,在顶部1米处含有超过1,500 Pg的C,在全球更深的层次中几乎是该量的两倍,因此这意味着土壤含有比植物生物量和大气加起来更多的C1。土壤有机质(SOM)保留水和土壤养分,对植物生产力和陆地生态系统的功能至关重要。尽管全球都认识到充足的SOM储量对土壤健康和农业生产力的重要性,但由于不可持续的森林和农业管理、景观变化和气候变暖,土壤碳储量已大量枯竭23。对恢复土壤健康和利用土壤碳保留作为自然气候解决方案的关键参与者的兴趣日益浓厚,导致人们努力了解在不同环境中控制土壤碳固存和稳定的因素45

土壤有机质(SOM)是不同化合物的复杂混合物,其范围从游离的,部分降解的植物成分到土壤聚集体中保存的更多微生物改变的化合物(此处定义为由单独的单元或项目组合形成的材料)到高度加工的微生物副产品,与活性土壤矿物质有很强的关联6.在无法识别SOM中全套单个化合物的情况下,研究人员通常专注于识别少量的C功能库,这些C作为物理现实存在,并且因周转率,一般化学成分和土壤矿物成分的稳定程度而异1,7.为了批判性地解释和建模水池,分离的矿池数量必须少,可直接测量而不仅仅是理论上的,并且在组成和反应性方面表现出明显的差异8。

已经采用了许多不同的技术,包括化学和物理技术,以分离有意义的土壤C池,von Lützow等人9和 Poeplau等人10很好地总结了这些技术。化学萃取技术旨在分离特定的池,例如与低结晶或结晶Fe和Al11相关的C。有机溶剂已被用于提取特定化合物,例如脂质12,并且SOM的水解或氧化已被用作C1314不稳定池的量度。然而,这些提取方法都没有将所有C池分类为可测量或可建模的分数。土壤的物理分馏根据大小将所有土壤C分类为池,并假设植物残骸的分解导致碎裂和颗粒越来越小。虽然仅靠大小无法将游离植物碎片与矿物相关的SOM15分开,但由于形成和周转中常见的空间,物理和生物地球化学差异,量化这两个池对于理解土壤C稳定性至关重要16

基于密度的土壤C分馏越来越多地被使用,并且易于执行,并根据与不同矿物的关联程度识别不同的C池171819;因此,土壤密度分级有助于阐明不同的土壤C稳定机制。分馏土壤的主要要求是能够完全分散有机和矿物颗粒。一旦分散,相对不含矿物质的降解有机物漂浮在轻于~1.85 g/cm 3的溶液中,而矿物质通常在2-4.5 g/cm 3的范围内,尽管氧化铁的密度可能高达5.3 g/cm 3轻颗粒或游离颗粒部分往往具有较短的周转时间(除非木炭有重大污染),并且已被证明对栽培和其他干扰高度敏感。重质(>1.85 g/cm3)或矿物相关部分通常具有较长的周转时间,因为当有机分子与反应性矿物表面结合时获得对微生物介导的分解的抵抗力。然而,重馏分可能会饱和(即达到矿物络合能力的上限),而轻馏分理论上几乎可以无限期地积累。因此,了解有机物在矿物相关与颗粒有机物池中的物理分布有助于阐明哪些生态系统可以管理以实现有效的碳封存,以及不同系统将如何应对气候变化和人为干扰模式的变化20

虽然在过去十年中,使用不同密度的聚钨酸钠溶液进行密度分馏的使用大大增加,但技术和方案差异很大,使得不同研究和不同生态系统的结果难以比较。尽管 1.85 g/cm 3 的密度已被证明可以回收最大量的自由光部分,而矿物质相关有机物 (MAOM) 的含量极少17,但许多研究使用的密度范围为 1.65-2.0 g/cm3。虽然大多数研究将土壤分馏为两个池(轻部分和重部分,以下简称LF和HF),但其他研究使用多种密度将重部分进一步细化为池,这些池因与其相关的矿物质,矿物质与有机涂层的相对比例或聚集程度(例如, Sollins et al.17, Sollins et al.18, Hatton et al.21, Lajtha et al.22, Yeasmin et al.23, Wagai et al.24, Volk et al.25)。此外,有人建议采用更复杂的分馏程序,将尺寸和密度分离结合起来,导致更多的池(例如,Yonekura 等人 26、Virto 等人 27、Moni 等人 15、Poeplau 等人 10),但在方法和与池大小相关的方面也存在更大的错误空间。此外,作者还使用了不同强度和时间的超声处理,以努力从矿物表面分散聚集体和MAOM28,2930

在这里,我们描述了一个强大的密度分馏程序,首先识别两个独特的土壤碳库(LF和HF,或POM和MAOM),我们提供了技术和论据,以进一步将HF池分离成其他部分,这些部分根据其矿物学,有机涂层程度或聚集度而有所不同。这里确定的馏分已被证明在其化学成分、周转时间、微生物加工程度和矿物质稳定程度方面有所不同1819

以下程序通过在具有特定密度的溶液中混合已知数量的土壤,将块状土壤分离为颗粒有机物(POM)和矿物相关有机物(MAOM)。该程序的有效性是通过土壤质量和碳相对于初始土壤样品质量和C含量的综合回收来衡量的。通过将聚钨酸钠(SPT)溶解在去离子水中来实现致密溶液。土壤最初与致密的SPT溶液混合并搅拌以彻底混合和分散土壤骨料。然后使用离心法分离漂浮在溶液中(轻质部分)或下沉(重部分)的土壤材料。混合、分离、回收和洗涤步骤重复多次,以确保轻质和重质馏分的分离,同时从材料中去除SPT。最后,对土壤组分进行干燥、称重并分析其 C 含量。分馏材料可用于后续程序和分析。

Protocol

1. 制备聚钨酸钠储备溶液 注意:SPT是一种刺激物,吞咽或吸入有害。对水生生物有毒;避免将其释放到环境中。 要制备密度为 1.85 g/cm3 的 1 L SPT 溶液,请将 1,051 g 结晶 SPT 溶解在约 600 mL 去离子蒸馏 (DDI) 水中。搅拌溶液直到SPT完全溶解,约15分钟,然后用DDI使溶液体积达到1L。注意:使用溶液密度 <1.85 g/cm3 的碳回收可能会不足地募集…

Representative Results

土壤密度分馏非常适合研究土壤颗粒和矿物质相关有机物含量的差异。将SOC分离到这两个不同的池中,为阐明土壤C含量和稳定动态的变化提供了一条途径,否则在观察土壤C含量的趋势时可能不清楚。重物的进一步分离(密度>1.85 g/cm3)提供了对土壤C稳定性变化和趋势的更多见解,但增加了程序和相关解释的复杂性,并带来了额外的成本。尽管如此,将土壤分馏成三个或三个以上密度池可…

Discussion

在整个土壤密度分馏方案中,必须密切监测一些特定的程序,以帮助减少土壤组分分离和分析中的误差。土壤密度分馏程序的一个关键步骤是反复验证SPT溶液的密度。土壤样品中的水分通常会稀释SPT溶液,从而降低SPT的密度。因此,研究人员必须始终确保在离心后实现轻溶液和重溶液的完全分离。如果馏分不能充分分离,则应添加更多的SPT溶液,或者减少土壤的质量。沙质土壤迅速分离,而质地?…

Declarações

The authors have nothing to disclose.

Acknowledgements

对于这项工作,国家科学基金会向K.L.拨款DEB-1257032和向H.J.安德鲁斯长期生态研究计划提供DEB-1440409的支持。

Materials

Aspirator/vacuum tubing 1/4 x 1/2" Kimble 10847-216
Conical polypropylene centrifuge tube, 250mL Thermo Scientific 376814
Conical rubber gasket for filtering flasks DWK Life Sciences 292020001
Double flat ended stainless steel spatula/scraper Fisher Scientific 14-373-25A
Glass fiber filter, grade GF/F, 110 mm Whatman WHA1825110
Glass mason jar, 16 oz Ball Corporation 500 ml beaker or glass weigh dish are also suitable 
Polypropylene conical bottle adapter, 250mL Beckman Coulter 369385
Porcelain buchner funnel, 90mm FisherBrand FB966F
Reciprocating shaker, 2-speed Eberbach E6000.00
Sidearm flask, 1000mL VWR 89000-386
Sodium Polytungstate, crystalline Sometu SPT-0 or SPT-1, see Discussion for SPT choice Shipping via FedEx from Germany
Swinging bucket centrifuge  Beckman Coulter 3362020

Referências

  1. Jackson, R. B., et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics. 48, 419-445 (2017).
  2. Crowther, T. W., et al. Quantifying global soil carbon losses in response to warming. Nature. 540 (7631), 104-108 (2016).
  3. Deng, L., Zhu, G., Tang, Z., Shangguan, Z. Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation. 5, 127-138 (2016).
  4. Griscom, B. W., et al. Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America. 114 (44), 11645-11650 (2017).
  5. Fargione, J. E., et al. Natural climate solutions for the United States. Science Advances. 4 (11), (2018).
  6. Kögel-Knabner, I., Rumpel, C. Advances in molecular approaches for understanding soil organic matter composition, origin, and turnover: A historical overview. Advances in Agronomy. 149, 1-48 (2018).
  7. Schmidt, M. W. I., et al. Persistence of soil organic matter as an ecosystem property. Nature. 478 (7367), 49-56 (2011).
  8. Billings, S. A., et al. Soil organic carbon is not just for soil scientists: Measurement recommendations for diverse practitioners. Ecological Applications. 31 (3), 02290 (2021).
  9. von Lützow, M., et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry. 39 (9), 2183-2207 (2007).
  10. Poeplau, C., et al. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biology and Biochemistry. 125, 10-26 (2018).
  11. Heckman, K., Lawrence, C. R., Harden, J. W. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma. 312, 24-35 (2018).
  12. Frostegård, &. #. 1. 9. 7. ;., Tunlid, A., Bååth, E. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods. 14 (3), 151-163 (1991).
  13. Plante, A. F., Conant, R. T., Paul, E. A., Paustian, K., Six, J. Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter. European Journal of Soil Science. 57 (4), 456-467 (2006).
  14. Eusterhues, K., Rumpel, C., Kögel-Knabner, I. Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry. 36 (11), 1567-1575 (2005).
  15. Moni, C., Derrien, D., Hatton, P. -. J., Zeller, B., Kleber, M. Density fractions versus size separates: does physical fractionation isolate functional soil compartments. Biogeosciences. 9 (12), 5181-5197 (2012).
  16. Lavallee, J. M., Soong, J. L., Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology. 26 (1), 261-273 (2020).
  17. Sollins, P., et al. Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biology and Biochemistry. 38 (11), 3313-3324 (2006).
  18. Sollins, P., et al. Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry. 96 (1-3), 209-231 (2009).
  19. Crow, S. E., Swanston, C. W., Lajtha, K., Brooks, J. R., Keirstead, H. Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context. Biogeochemistry. 85 (1), 69-90 (2007).
  20. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience. 12 (12), 989-994 (2019).
  21. Hatton, P. -. J., et al. Transfer of litter-derived N to soil mineral-organic associations: Evidence from decadal 15N tracer experiments. Organic Geochemistry. 42 (12), 1489-1501 (2012).
  22. Lajtha, K., et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry. 119 (1-3), 341-360 (2014).
  23. Yeasmin, S., Singh, B., Johnston, C. T., Sparks, D. L. Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochimica et Cosmochimica Acta. 218, 215-236 (2017).
  24. Wagai, R., Kajiura, M., Asano, M., Hiradate, S. Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different. Geoderma. 241-242, 295-305 (2015).
  25. Volk, M., Bassin, S., Lehmann, M. F., Johnson, M. G., Andersen, C. P. 13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition. Soil Biology and Biochemistry. 125, 178-184 (2018).
  26. Yonekura, Y., et al. Soil organic matter dynamics in density and particle-size fractions following destruction of tropical rainforest and the subsequent establishment of Imperata grassland in Indonesian Borneo using stable carbon isotopes. Plant and Soil. 372 (1-2), 683-699 (2013).
  27. Virto, I., Moni, C., Swanston, C., Chenu, C. Turnover of intra- and extra-aggregate organic matter at the silt-size scale. Geoderma. 156 (1-2), 1-10 (2010).
  28. Poeplau, C., et al. Reproducibility of a soil organic carbon fractionation method to derive RothC carbon pools. European Journal of Soil Science. 64 (6), 735-746 (2013).
  29. Cerli, C., Celi, L., Kalbitz, K., Guggenberger, G., Kaiser, K. Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level. Geoderma. 170, 403-416 (2012).
  30. Kaiser, K., Guggenberger, G. Distribution of hydrous aluminium and iron over density fractions depends on organic matter load and ultrasonic dispersion. Geoderma. 140 (1-2), 140-146 (2007).
  31. Helbling, E., Pierson, D., Lajtha, K. Sources of soil carbon loss during soil density fractionation: Laboratory loss or seasonally variable soluble pools. Geoderma. 382, 114776 (2021).
  32. Nelson, D. W., Sommers, L. E., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 3 Chemical Methods. , 539-579 (2015).
  33. Pierson, D., et al. Mineral stabilization of soil carbon is suppressed by live roots, outweighing influences from litter quality or quantity. Biogeochemistry. 154 (3), 433-449 (2021).
  34. Kramer, M. G., Lajtha, K., Thomas, G., Sollins, P. Contamination effects on soil density fractions from high N or C content sodium polytungstate. Biogeochemistry. 92 (1-2), 177-181 (2009).
  35. Throop, H. L., Lajtha, K., Kramer, M. Density fractionation and 13C reveal changes in soil carbon following woody encroachment in a desert ecosystem. Biogeochemistry. 112 (1-3), 409-422 (2013).
  36. Amelung, W., Zech, W. Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma. 92 (1-2), 73-85 (1999).
  37. Kaiser, M., Asefaw Berhe, A. How does sonication affect the mineral and organic constituents of soil aggregates?-A review. Journal of Plant Nutrition and Soil Science. 177 (4), 479-495 (2014).
check_url/pt/64759?article_type=t

Play Video

Citar este artigo
Pierson, D., Lajtha, K., Peter-Contesse, H., Mayedo, A. Utilizing Soil Density Fractionation to Separate Distinct Soil Carbon Pools. J. Vis. Exp. (190), e64759, doi:10.3791/64759 (2022).

View Video