Summary

明胶甲基丙烯酰基颗粒水凝胶支架:高通量微凝胶制造、冻干、化学组装和 3D 生物打印

Published: December 09, 2022
doi:

Summary

本文介绍了使用微流体装置制造高通量明胶甲基丙烯酰基微凝胶的协议,将微凝胶转化为可重悬粉末(微气凝胶),微凝胶的化学组装以形成颗粒水凝胶支架,以及开发具有保留微孔隙率的颗粒水凝胶生物墨水用于3D生物打印。

Abstract

通过组装水凝胶微粒(HMP) 制造的 颗粒水凝胶支架(GHS)的出现使微孔支架能够原 形成。与传统的块状水凝胶不同,GHS中互连的微尺度孔有助于与降解无关的细胞浸润以及氧气,营养和细胞副产物的转移。甲基丙烯酰基改性明胶(GelMA)是一种(光)化学可交联的蛋白质基生物聚合物,含有细胞粘合剂和可生物降解的部分,已被广泛用作细胞响应/指导性生物材料。将散装GelMA转化为GHS可能会为组织工程和再生带来大量机会。在本文中,我们展示了高通量GelMA微凝胶制造,转化为可重悬的干燥微凝胶(微气凝胶),通过微凝胶的化学组装 形成 GHS以及用于挤出生物打印的颗粒生物墨水制造的过程。我们展示了通过冷却和光交联的顺序物理化学处理如何能够形成机械坚固 GHS。当光线无法接触时(例如,在深层组织注射期间),可以使用谷氨酰胺转移酶通过酶促交联 进行 生物正交组装单独交联的 GelMA HMP。最后,通过多相带电纳米颗粒的界面自组装 ,证明了 低HMP堆积密度下微孔GHS的三维(3D)生物打印。

Introduction

组装HMP构建块以形成组织工程支架在过去几年中获得了极大的关注1。通过HMP组件制造的GHS与散装同类产品相比具有独特的性能,包括源自离散构建块之间的空隙的细胞级微孔隙。其他特性,如注射性、模块化和刚度与孔隙率的解耦,使 GHS 成为增强组织修复和再生的有前途的平台2.不同的生物材料已被用于GHS制造,包括合成PEG基聚合物34和多糖,如藻酸盐5和透明质酸67在天然衍生聚合物中,用于GHS制造的最常见的基于蛋白质的生物聚合物是GelMA8910,11,这是一种可交联,生物相容性,生物粘附性和可生物降解的生物材料1213

HMP可以通过间歇乳化8、流动聚焦14、15或分步乳化9、11微流体装置、共混16或复合聚结1718制备。通常,制造吞吐量和HMP单分散性之间存在权衡。例如,混合技术产生不规则形状和高度分散的HMP。 间歇乳化或复杂凝聚能够生产大量多分散球形HMP。 聚焦流动微流体装置已被用于制造变异系数为<5%的高度单分散液滴,但通量显着降低。在分步乳化微流体器件中,高度并行化的步骤能够实现单分散HMP的高通量制造19

甲基丙烯酰改性明胶 (GelMA) HMP 构建块具有热响应性和(光)化学交联性,可实现轻松的 GHS 制造20。当冷却到临界溶液温度(UCST)21以下(例如,在4°C下)时,含有GelMA溶液的液滴转化为物理交联的HMP。然后利用外力(例如,通过离心)填充这些 HMP 构建块以产生卡住的微凝胶悬浮液。通过(光)化学交联相邻的HMP之间建立颗粒间链接,以形成机械坚固的GHS14。GHS最重要的特性之一是微孔率,使体细胞易于渗透11,并增强体内组织向内生长22。HMP的三维(3D)生物打印通常使用紧密包装的微凝胶悬浮液进行,这会影响微孔23

我们最近开发了一类基于GelMA微凝胶的界面纳米工程的新型颗粒生物墨水,通过吸附带异质电荷的纳米颗粒 然后纳米颗粒可逆自组装。该策略使松散包装的微凝胶剪切产量和挤出3D可生物打印,从而保留了增材制造的GHS11的微尺度孔隙率。本文介绍了高通量 GelMA 液滴制造方法、将这些液滴转化为物理交联的 HMP、使用可重悬粉末制造 GelMA HMP、GelMA GHS 形成、GelMA 纳米工程颗粒生物墨水 (NGB) 制备和 3D 生物打印。

Protocol

注意:有关本协议中使用的所有材料、仪器和试剂的详细信息,请参阅 材料表 。 1. 凝胶MA合成 注意:GelMA合成应在化学通风橱中进行,并应始终使用适当的个人防护设备(PPE)。 将200mL的Dulbecco磷酸盐缓冲盐水(DPBS,1x)加入锥形瓶中,并将溶液加热至达到50°C。 用铝箔盖住烧瓶以防止蒸发。 在50°C下向DPBS溶液中…

Representative Results

GelMA是通过明胶与MA的反应合成的,如图 1A所示。通过调整反应条件,如MA浓度,得到不同程度的MA取代。为了量化MA取代的程度, 通过1H NMR波谱评估GelMA(图1B)。在~5-6 ppm的化学位移处具有代表性峰的乙烯基官能团证实了明胶成功合成GelMA。透析和无菌过滤后的反应收率为>70%(mg的GelMA/mg的明胶)。液滴/微凝胶制备产率为~100%。可以使用?…

Discussion

明胶及其衍生物是HMP制造中最常用的基于蛋白质的生物材料。使用步进乳化微流体装置可以克服通量与粒径单分散性权衡的挑战。这些装置每小时能够形成超过4000万个液滴,变异系数小于5%27。在本文中,我们讨论了含有GelMA溶液的液滴的微细加工,然后将其转化为GelMA HMP,粉末,GHS和NGB。

GelMA的热响应性使微流体的HMP制造和稳定变得简单。在高于UCST的温度?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者要感谢宾夕法尼亚州立大学(宾夕法尼亚州立大学)化学工程系的研究支持专家T. Pond,宾夕法尼亚州立大学纳米制造实验室的工作人员以及Partillion Bioscience的J. de Rutte博士关于纳米制造过程的帮助和讨论。A. Sheikhi感谢材料研究所(MRI)和工程材料物质学院在人类水平种子基金,生活多功能材料系统融合中心(LiMC2)和卓越集群生活,适应性和能源自主材料系统(livMatS)生活多功能材料合作研究种子资助计划,以及宾夕法尼亚州立大学的启动基金的支持。本出版物中报告的研究得到了美国国立卫生研究院(NIH)国家生物医学成像和生物工程研究所(NIBIB)的部分支持,奖励号为R56EB032672。

Materials

1H,1H-perfluoro-1-octanol Alfa Aesar, MA, USA B20156-18 98% purity
Biopsy punch Integra Miltex, NY, USA 33-31A-P/25 1.5 mm Biopsy Punch with Plunger System
Blunt needle SANANTS 30-002-25 25 G
Bruker Avance NEO 400 MHz 400 MHz Bruker NEO, MA, USA NMR device
Centrifuge Eppendorf, Germany 5415 C
Centrifuge tube Celltreat, MA ,USA 229423
Coffee filters BUNN, IL, USA 20104.0006 BUNN 8-12 Cup Coffee Filters, 6 each, 100 ct
Desiccator Thermo Scientific 5311-0250 Nalgene Vacuum Desiccator, PC Cover and Body, 280 mm OD
Deuterium oxide Sigma, MA, USA 151882
Dialysis membrane (12-14 kDa) Spectrum Laboratories, NJ, USA 08-667E
Dulbecco's phosphate buffered saline (DPBS, 1x) Sigma, MA, USA 56064C-10L dry powder, without calcium, without magnesium, suitable for cell culture
Erlenmeyer flask Corning, NY, USA 4980 Corning PYREX 
Ethanol VWR, PA, USA 89125-188 Koptec 200 proof
External thread cryogenic vials (cryovials) Corning, NY, USA 430659
Freeze dryer Labconco, MO, USA 71042000 Equipped with vacuum pump (Catalog# 7587000)
Gelatin powder Sigma, MA, USA G1890-5100G Type A from porcine skin, gel strength ~300 g Bloom
Glass microscope slides VWR, PA, USA 82027-788
Hotplate FOUR E'S SCIENTIFIC MI0102003 5 inch Magnetic Hotplate Stirrer Max Temp 280 °C/536 °F 
Kimwipes Fischer scientific, MA, USA 06-666
KMPR 1000 negative photoresist series Kayaku Advanced Materials, MA, USA 121619 KMPR1025 and KMP1035 are included
LAPONITE XLG BYK USA Inc., CT, USA 2344265
Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) Sigma, MA, USA 900889-1G >95%
Luer-Lok connector BD, NJ, USA BD 302995 
MA/BA Gen4-Serie Mask- und Bond-Aligner SÜSS MicroTeck, German Nanofabrication device
Methacylate anhydride Sigma, MA, USA 276685-100ML contains 2,000 ppm topanol A as inhibitor, 94%
Milli-Q water Millipore Corporation, MA, USA ZRQSVR5WW electrical resistivity ≈ 18 MΩ at 25 °C, Direct-Q 5 UV Remote Water Purification System
Novec 7500 engineering fluid 3M, MN, USA 3M ID 7100003723
Oven VWR, PA, USA VWR-1410 1410 Vacuum Oven
Parafilm Fischer scientific, MA, USA HS234526C
Pasteur pipette VWR, PA, USA 14673-010
Petri dish VWR, PA, USA 25384-092 polystyrene
Pico-Surf Sphere Fluidics, UK C022 (5% (w/w) in Novec 7500)
Pipette VWR, PA, USA 89079-970
Pipette tips VWR, PA, USA 87006-060
Plasma cleaner chamber Harrick Plasma, NY, USA PDC-001-HP 
Polydimethylsiloxane Dow Corning, MI, USA  2065623 SYLGARD 184 Silicone Elastomer Kit
Positive displacement pipette Microman E M100E, Gilson, OH, USA M100E
Silicon wafers UniversityWafer, MA, USA 452/1196 4-inch mechanical grade
Spatula VWR, PA, USA 231-0104 Disposable
SU-8  Kayaku Advanced Materials, MA, USA
Syringe pump Harvard Apparatus, MA, USA 70-2001 PHD 2000
Trichloro(1H,1H,2H,2H-perfluorooctyl)silane Millipore Sigma, MA, USA 448931-10G 97%
Tygon tubings Saint-globain, PA, USA AAD04103 
UV light  QUANS Voltage: 85 V-265 V AC / Power: 20 W
Vacuum filtration unit VWR, PA, USA 10040-460 0.20 µm
Vortex Fischer scientific, USA 14-955-151 Mini Vortex Mixer

Referências

  1. Feng, Q., Li, D., Li, Q., Cao, X., Dong, H. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioactive Materials. 9, 105-119 (2022).
  2. Daly, A. C., Riley, L., Segura, T., Burdick, J. A. Hydrogel microparticles for biomedical applications. Nature Reviews Materials. 5 (1), 20-43 (2020).
  3. Griffin, D. R., et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nature Materials. 20 (4), 560-569 (2021).
  4. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D., Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature Materials. 14 (7), 737-744 (2015).
  5. Ding, A., et al. Jammed micro-flake hydrogel for four-dimensional living cell bioprinting. Advanced Materials. 34 (15), 2109394 (2022).
  6. Muir, V. G., et al. Sticking together: injectable granular hydrogels with increased functionality via dynamic covalent inter-particle crosslinking. Small. 18 (36), 2201115 (2022).
  7. Sideris, E., et al. Particle hydrogels based on hyaluronic acid building blocks. ACS Biomaterials Science and Engineering. 2 (11), 2034-2041 (2016).
  8. Molley, T. G., Hung, T., Kilian, K. A. Cell-laden gradient microgel suspensions for spatial control of differentiation during biofabrication. Advanced Healthcare Materials. , 2201122 (2022).
  9. Zoratto, N., et al. In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering. Bioengineering and Translational. 5 (3), (2020).
  10. Yuan, Z., et al. In situ fused granular hydrogels with ultrastretchability, strong adhesion, and mutli-bioactivities for efficient chronic wound care. Chemical Engineering Journal. 450, 138076 (2022).
  11. Ataie, Z., et al. Nanoengineered granular hydrogel bioinks with preserved interconnected microporosity for extrusion bioprinting. Small. 18 (37), 2202390 (2022).
  12. Annabi, N., et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Advanced Materials. 26 (1), 85-124 (2014).
  13. Rajabi, N., et al. Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair. Tissue Engineering. Part A. 27 (11-12), 679-702 (2021).
  14. Sheikhi, A., Di Carlo, D., Khademhosseini, A., De Rutte, J. Methods for fabricating modular hydrogels from macromolecules with orthogonal physico-chemical responsivity. U.S. Patent Application. , (2021).
  15. Sheikhi, A., et al. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials. 192, 560-568 (2019).
  16. Hinton, T. J., et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances. 1 (9), (2015).
  17. Seymour, A. J., Shin, S., Heilshorn, S. C. 3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration. Advanced Healthcare Materials. 10 (18), 2100644 (2021).
  18. Lee, A., et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 365 (6452), 482-487 (2019).
  19. de Rutte, J. M., Koh, J., Di Carlo, D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Advanced Functional Materials. 29 (25), 1900071 (2019).
  20. Sheikhi, A., et al. Modular microporous hydrogels formed from microgel beads with orthogonal thermo-chemical responsivity: Microfluidic fabrication and characterization. MethodsX. 6, 1747-1752 (2019).
  21. Van Den Bulcke, A. I., et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 1 (1), 31-38 (2000).
  22. Qazi, T. H., et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials. 34 (12), 2109194 (2022).
  23. Highley, C. B., Song, K. H., Daly, A. C., Burdick, J. A. Jammed microgel inks for 3d printing applications. Advanced Science. 6 (1), 1801076 (2019).
  24. Claaßen, C., et al. Quantification of substitution of gelatin methacryloyl: best practice and current pitfalls. Biomacromolecules. 19 (1), 42-52 (2018).
  25. Sheikhi, A., Di Carlo, D., Khademhosseini, A. Methods for converting colloidal systems to resuspendable/redispersable powders that preserve the original properties of the colloids. U.S. Patent Application. , (2022).
  26. Sheikhi, A., et al. Microengineered emulsion-to-powder technology for the high-fidelity preservation of molecular, colloidal, and bulk properties of hydrogel suspensions. ACS Applied Polymer Materials. 1 (8), 1935-1941 (2019).
  27. Lee, S., de Rutte, J., Dimatteo, R., Koo, D., Di Carlo, D. Scalable fabrication and use of 3d structured microparticles spatially functionalized with biomolecules. ACS Nano. 16 (1), 38-49 (2022).
  28. Charlet, A., Bono, F., Amstad, E. Mechanical reinforcement of granular hydrogels. Chemical Science. 13 (11), 3082-3093 (2022).
check_url/pt/64829?article_type=t

Play Video

Citar este artigo
Ataie, Z., Jaberi, A., Kheirabadi, S., Risbud, A., Sheikhi, A. Gelatin Methacryloyl Granular Hydrogel Scaffolds: High-throughput Microgel Fabrication, Lyophilization, Chemical Assembly, and 3D Bioprinting. J. Vis. Exp. (190), e64829, doi:10.3791/64829 (2022).

View Video