Summary

人类多能干细胞分化为产生胰岛素的胰岛簇

Published: June 23, 2023
doi:

Summary

干细胞分化为胰岛细胞为传统的糖尿病治疗和疾病建模提供了另一种解决方案。我们描述了一种详细的干细胞培养方案,该方案将商业分化试剂盒与先前验证的方法相结合,以帮助在培养皿中产生分泌胰岛素的干细胞衍生胰岛。

Abstract

人类多能干细胞 (hPSC) 分化为分泌胰岛素的 β 细胞为研究 β 细胞功能和糖尿病治疗提供了材料。然而,在获得充分模拟天然人类β细胞的干细胞衍生的β细胞方面仍然存在挑战。在先前研究的基础上,已经生成了 hPSC 衍生的胰岛细胞,以创建具有改进的分化结果和一致性的方案。这里描述的方案在第 1-4 阶段使用胰腺祖细胞试剂盒,然后在第 5-7 阶段使用根据 2014 年发表的论文修改的方案(以下简称“R 协议”)。包括使用胰祖细胞试剂盒和 400 μm 直径微孔板生成胰祖细胞簇的详细程序、用于 96 孔静态悬浮形式内分泌分化的 R 方案,以及 hPSC 衍生胰岛的 体外 表征和功能评估。完整的方案需要 1 周进行初始 hPSC 扩增,然后需要 ~5 周才能获得产生胰岛素的 hPSC 胰岛。具有基本干细胞培养技术和生物测定培训的人员可以重现该协议。

Introduction

胰腺β细胞分泌胰岛素,对血糖水平的升高做出反应。由于 1 型糖尿病 (T1D)1 中 β 细胞的自身免疫性破坏或 2 型糖尿病 (T2D)2 中 β 细胞功能障碍而缺乏足够胰岛素分泌的患者通常使用外源性胰岛素进行治疗。尽管这种疗法可以挽救生命,但它无法精确地与真正的β细胞动态分泌胰岛素所实现的血糖精确控制相媲美。因此,患者经常遭受危及生命的低血糖发作和慢性高血糖波动引起的其他并发症的后果。人类尸体胰岛的移植成功地恢复了 T1D 患者的严格血糖控制,但受到胰岛供体可用性和纯化健康胰岛进行移植的困难的限制 3,4。原则上,这一挑战可以通过使用hPSC作为替代起始材料来解决。

目前在体外从 hPSC 产生胰岛素分泌胰岛的策略通常旨在模拟体内胚胎胰腺发育的过程 5,6。这需要了解负责任的信号通路,并定时添加相应的可溶性因子,以模拟发育中的胚胎胰腺的关键阶段。胰腺程序从确定的内胚层开始,其标志是转录因子叉头盒 A2 (FOXA2) 和性别决定区 Y-box 17 (SOX17)7。最终内胚层的连续分化包括形成原始肠管,形成表达胰腺和十二指肠同源框 1 (PDX1)7,8,9 的后前肠以及上皮扩张为共表达 PDX1 和 NK6 同源框 1 (NKX6.1)10,11 的胰腺祖细胞。

对内分泌胰岛细胞的进一步承诺伴随着促内分泌主调节因子神经原蛋白-3 (NGN3)12 的瞬时表达以及关键转录因子神经元分化 1 (NEUROD1) 和 NK2 同源框 2 (NKX2.2) 13 的稳定诱导。随后对主要的激素表达细胞进行编程,例如产生胰岛素的 β 细胞、产生胰高血糖素的 α 细胞、产生生长抑素的 delta 细胞和产生胰腺多肽的 PPY 细胞。凭借这些知识,以及广泛的高通量药物筛选研究的发现,最近的进展使 hPSC 胰岛能够产生类似于 β 细胞的细胞,能够分泌胰岛素 14,15,16,17,18,19。

已经报道了产生葡萄糖反应性 β 细胞的分步方案 6,14,18,19。基于这些研究,本方案涉及使用胰腺祖细胞试剂盒在平面培养物中产生 PDX1+/NKX6.1+ 胰腺祖细胞,然后将微孔板聚集成大小均匀的簇,并在静态 3D 悬浮培养物中使用 R 方案进一步分化为分泌胰岛素的 hPSC 胰岛。进行质量控制分析,包括流式细胞术、免疫染色和功能评估,以严格表征分化细胞。本文详细介绍了定向分化的每个步骤,并概述了体外表征方法。

Protocol

该协议基于在无饲养层条件下使用 hPSC 系,包括 H1、HUES4 PDXeG 和 Mel1 INSGFP/W。本节详细介绍了分步过程,并在代表性结果部分提供了来自Mel1 INSGFP/W 区分的支持数据。我们建议在使用此处未说明的其他 hPSC 细胞系时需要进一步优化。有关本方案中使用的所有试剂和溶液的详细信息,请参阅 材料表 。 1. 分化培养基及溶液的制备 <p class=…

Representative Results

我们开发了一种混合策略,通过七个步骤将干细胞分化为分泌胰岛素的 hPSC 胰岛,该策略在平面培养的前四个阶段使用胰腺祖细胞试剂盒,然后在最后三个阶段的静态悬浮培养中以先前报道的方法6 为基础(图 1).使用该方案,确保在细胞接种后 24 小时(第 0 阶段)进行接近汇合 (90%-100%) 的培养对于启动大多数 hPSC 系的有效分化至关重要(<strong class="xfig"…

Discussion

本文描述了一种七阶段混合方案,该方案允许在体外培养后 40 天内产生能够在葡萄糖激发时分泌胰岛素的 hPSC 胰岛。在这些多个步骤中,有效诱导最终内胚层被认为为最终分化结果设定了重要的起点 18,27,28。在制造商的方案中,建议接种密度为2.6×105 / cm 2以启动分化,并将细胞暴露于第1阶段培养基中2?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们非常感谢 STEMCELL Technologies、Michael Smith Health Research BC、Stem Cell Network、JDRF 和加拿大卫生研究院的支持。Jia Zhao 和 Shenghui Liang 是 Michael Smith Health Research BC 实习生奖的获得者。Mitchell J.S. Braam 是 Mitacs Accelerate Fellowship 的获得者。Diepiriye G. Iworima 是 Alexander Graham Bell 加拿大研究生奖学金和 CFUW 1989 年巴黎综合理工学院纪念奖的获得者。我们衷心感谢来自MCRI和莫纳什大学的Edouard G. Stanley博士分享Mel1 INS GFP / W 系和阿尔伯塔省糖尿病研究所胰岛核心分离和分布人类胰岛。我们还要感谢不列颠哥伦比亚大学生命科学研究所成像和流式细胞术设施的支持。 图 1 是使用 BioRender.com 创建的。

Materials

3,3’,5-Triiodo-L-thyronine (T3) Sigma T6397 Thyroid hormone
4% PFA solution Santa Cruz Biotechnology sc-281692 Should be handled in fume hood
96-Well, Ultralow Attachment, flat bottom Corning Costar (VWR) CLS3474 Flat bottom; for static suspension culture in the last three stages
Accutase STEMCELL Technologies 07920 Dissociation reagent for Stage 4 cells
Aggrewell400 plates STEMCELL Technologies 34415 400 µm diameter microwell plates
Aggrewell800 plates STEMCELL Technologies 34815 800 µm diameter microwell plates
Alexa Fluor 488 Goat anti-Human FOXA2 (goat IgG) R&D Systems IC2400G 1:100 in flow cytometry; used for assaying Stage 1 cells
Alexa Fluor 488 Goat IgG Isotype Control R&D Systems IC108G 1:100 in flow cytometry
Alexa Fluor 488 Mouse anti-Human SST (mouse IgG2B) BD Sciences 566032 1:250 in flow cytometry; used for assaying Stage 7 cells
Alexa Fluor 488 Mouse IgG2B Isotype Control R&D Systems IC0041G 1:500 in flow cytometry
Alexa Fluor 647 Mouse anti-Human C-peptide (mouse IgG1κ) BD Pharmingen 565831 1:2,000 in flow cytometry; used for assaying Stage 7 cells
Alexa Fluor 647 Mouse anti-Human INS (mouse IgG1κ) BD Sciences 565689 1:2,000 in flow cytometry
Alexa Fluor 647 Mouse anti-Human NKX6.1 (mouse IgG1κ) BD Sciences 563338 1:33 in flow cytometry; used for assaying Stage 4 cells
Alexa Fluor 647 Mouse anti-Human SOX17 (mouse IgG1κ) BD Sciences 562594 1:50 in flow cytometry; used for assaying Stage 1 cells
Alexa Fluor 647 Mouse IgG1κ Isotype Control BD Sciences 557714 1:50 in flow cytometry
ALK5i II Cayman Chemicals 14794 TGF-beta signaling inhibitor
Anti-Adherence Rinsing Solution  STEMCELL Technologies 7010 Microwell Rinsing Solution
Assay chamber Cellvis D35-10-1-N For static GSIS and confocal imaging purposes
Bovine serum albumin (BSA) Thermo Fisher Scientific BP1600-100 For immunostaining procedure
CK19 antibody DAKO M0888 1:50 in whole mount immunofluorescence
D-glucose Sigma G8769 Medium supplement
DAPI Sigma D9542 For nuclear counterstaining
DMEM/F12, HEPES Thermo Fisher Scientific 11330032 Matrix diluting solution
Donkey anti-goat Alexa Fluor 555 Life technologies A21432 1:500 in whole mount immunofluorescence
Donkey anti-goat Alexa Fluor 647 Life technologies A21447 1:500 in whole mount immunofluorescence
Donkey anti-mouse Alexa Fluor 555 Life technologies A31570 1:500 in whole mount immunofluorescence
Donkey anti-mouse Alexa Fluor 647 Life technologies A31571 1:500 in whole mount immunofluorescence
Donkey anti-rabbit Alexa Fluor 555 Life technologies A31572 1:500 in whole mount immunofluorescence
Donkey anti-rabbit Alexa Fluor 647 Life technologies A31573 1:500 in whole mount immunofluorescence
Donkey anti-sheep Alexa Fluor 647 Life technologies A21448 1:500 in whole mount immunofluorescence
DPBS Sigma D8537 Without Ca2+ and Mg2+
ELISA, insulin, human Alpco 80-INSHU-E01.1 For human insulin measurement
Fatty acid-free BSA Proliant 68700 Medium supplement
Fixation and Permeabilization Solution Kit BD Sciences 554714 Fix/Perm and 10x Perm/Wash solutions included
Gentle Cell Dissociation Reagent STEMCELL Technologies 7174 For clump passaging hPSCs during maintenance culture
Glucagon antibody Sigma G2654 1:400 in whole mount immunofluorescence
GLUT1 antibody Thermo Fisher Scientific PA1-37782 1:200 in whole mount immunofluorescence
GlutaMAX-I (100x) Gibco 35050061 L-glutamine supplement
Glycerol Thermo Fisher Scientific G33-4 For tissue clearing and mounting
GSi XX Sigma Millipore 565789 Notch inhibitor
Heparin Sigma H3149 Medium supplement
ITS-X (100x) Thermo Fisher Scientific 51500056 Insulin-Transferrin-Selenium-Ethanolamine; medium supplement
LDN193189  STEMCELL Technologies 72147 BMP antagonist
MAFA antibody Abcam ab26405 1:200 in whole mount immunofluorescence
Matrigel, hESC-qualified Thermo Fisher Scientific 08-774-552 Extracellular matrix for vessel surface coating
MCDB131 medium Life technologies 10372019 Base medium
mTeSR1 Complete Kit STEMCELL Technologies 85850 stem cell medium and 5x supplement included
N-Cys (N-acetyl cysteine) Sigma A9165 Antioxidant
NaHCO3 Sigma S6297 Medium supplement
NEUROD1 antibody R&D Systems AF2746 1:20 in whole mount immunofluorescence
NKX6.1 antibody DSHB F55A12-c 1:50 in whole mount immunofluorescence
Pancreatic polypeptide antibody R&D Systems AF6297 1:200 in whole mount immunofluorescence
PBS Sigma D8662 With Ca2+ and Mg2+
PDX1 antibody Abcam ab47267 1:200 in whole mount immunofluorescence
PE Mouse anti-Human GCG (mouse IgG1κ) BD Sciences 565860 1:2,000 in flow cytometry; used for assaying Stage 7 cells
PE Mouse anti-Human NKX6.1 (mouse IgG1k) BD Sciences 563023 1:250 in flow cytometry
PE Mouse anti-Human PDX1 (mouse IgG1k) BD Sciences 562161 1:200 in flow cytometry; used for assaying Stage 4 cells
PE Mouse IgG1κ Isotype Control BD Sciences 554680 1:2,000 in flow cytometry
PE Mouse-Human Chromogranin A (CHGA, mouse IgG1k) BD Sciences 564563 1:200 in flow cytometry
R428  Cayman Chemicals 21523 AXL tyrosine kinase inhibitor
Retinoid acid, all-trans Sigma R2625 Light-sensitive
RIPA lysis buffer, 10x Sigma 20-188 For hormone extraction
SANT-1 Sigma S4572 SHH inhibitor
SLC18A1 antibody Sigma HPA063797 1:200 in whole mount immunofluorescence
Somatostatin antibody Sigma HPA019472 1:100 in whole mount immunofluorescence
STEMdiff Pancreatic Progenitor Kit STEMCELL Technologies 05120 Basal media and supplements included
Synaptophysin antibody Novus NB120-16659 1:25 in whole mount immunofluorescence
Triton X-100 Sigma X100 For permeabilization
Trolox  Sigma Millipore 648471 Vitamin E analog
TrypLE Enzyme Express Life technologies 12604-021 cell dissociation enzyme reagent for single cell passaging hPSCs
Trypsin1/2/3 antibody R&D Systems AF3586 1:25 in whole mount immunofluorescence
Y-27632 STEMCELL Technologies 72304 ROCK inhibitor
Zinc sulfate Sigma Z0251 Medium supplement

Referências

  1. Atkinson, M. A., Eisenbarth, G. S., Michels, A. W. Type 1 diabetes. Lancet. 383 (9911), 69-82 (2014).
  2. Petersen, M. C., Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiological Reviews. 98 (4), 2133-2223 (2018).
  3. Shapiro, A. M., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. The New England Journal of Medicine. 343 (4), 230-238 (2000).
  4. Gamble, A., Pepper, A. R., Bruni, A., Shapiro, A. M. J. The journey of islet cell transplantation and future development. Islets. 10 (2), 80-94 (2018).
  5. Pagliuca, F. W., et al. Generation of functional human pancreatic beta cells in vitro. Cell. 159 (2), 428-439 (2014).
  6. Rezania, A., et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology. 32 (11), 1121-1133 (2014).
  7. Jennings, R. E., et al. Development of the human pancreas from foregut to endocrine commitment. Diabetes. 62 (10), 3514-3522 (2013).
  8. Jorgensen, M. C., et al. An illustrated review of early pancreas development in the mouse. Endocrine Reviews. 28 (6), 685-705 (2007).
  9. Jensen, J. Gene regulatory factors in pancreatic development. Developmental Dynamics. 229 (1), 176-200 (2004).
  10. Hald, J., et al. Generation and characterization of Ptf1a antiserum and localization of Ptf1a in relation to Nkx6.1 and Pdx1 during the earliest stages of mouse pancreas development. Journal of Histochemistry and Cytochemistry. 56 (6), 587-595 (2008).
  11. Villasenor, A., Chong, D. C., Henkemeyer, M., Cleaver, O. Epithelial dynamics of pancreatic branching morphogenesis. Development. 137 (24), 4295-4305 (2010).
  12. Rukstalis, J. M., Habener, J. F. Neurogenin3: a master regulator of pancreatic islet differentiation and regeneration. Islets. 1 (3), 177-184 (2009).
  13. Mastracci, T. L., Anderson, K. R., Papizan, J. B., Sussel, L. Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genetics. 9 (2), e1003278 (2013).
  14. Balboa, D., et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nature Biotechnology. 40 (7), 1042-1055 (2022).
  15. Du, Y., et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nature Medicine. 28 (2), 272-282 (2022).
  16. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L., Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nature Biotechnology. 38 (4), 460-470 (2020).
  17. Yoshihara, E., et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature. 586 (7830), 606-611 (2020).
  18. Mahaddalkar, P. U., et al. Generation of pancreatic beta cells from CD177(+) anterior definitive endoderm. Nature Biotechnology. 38 (9), 1061-1072 (2020).
  19. Liang, S., et al. Differentiation of stem cell-derived pancreatic progenitors into insulin-secreting islet clusters in a multiwell-based static 3D culture system. Cell Reports Methods. 3, 10046 (2023).
  20. Zhao, J., et al. In vivo imaging of beta-cell function reveals glucose-mediated heterogeneity of beta-cell functional development. Elife. 8, e41540 (2019).
  21. Zhao, J., et al. In vivo imaging of calcium activities from pancreatic beta-cells in zebrafish embryos using spinning-disc confocal and two-photon light-sheet microscopy. Bio-protocol. 11 (23), e4245 (2021).
  22. Liang, S., et al. Carbon monoxide enhances calcium transients and glucose-stimulated insulin secretion from pancreatic beta-cells by activating phospholipase C signal pathway in diabetic mice. Biochemical and Biophysical Research Communications. 582, 1-7 (2021).
  23. Bruin, J. E., et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia. 56 (9), 1987-1998 (2013).
  24. Toyoda, T., et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Research. 14 (2), 185-197 (2015).
  25. Russ, H. A., et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO Journal. 34 (13), 1759-1772 (2015).
  26. Veres, A., et al. Charting cellular identity during human in vitro beta-cell differentiation. Nature. 569 (7756), 368-373 (2019).
  27. D’Amour, K. A., et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology. 23 (12), 1534-1541 (2005).
  28. Jiang, Y., et al. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Reports. 16 (9), 2395-2409 (2021).
  29. Tran, R., Moraes, C., Hoesli, C. A. Controlled clustering enhances PDX1 and NKX6.1 expression in pancreatic endoderm cells derived from pluripotent stem cells. Scientific Reports. 10 (1), 1190 (2020).
  30. Mamidi, A., et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 564 (7734), 114-118 (2018).
  31. Rezania, A., et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 31 (11), 2432-2442 (2013).
  32. Sander, M., et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development. 127 (24), 5533-5540 (2000).
check_url/pt/64840?article_type=t

Play Video

Citar este artigo
Zhao, J., Liang, S., Braam, M. J. S., Baker, R. K., Iworima, D. G., Quiskamp, N., Kieffer, T. J. Differentiation of Human Pluripotent Stem Cells into Insulin-Producing Islet Clusters. J. Vis. Exp. (196), e64840, doi:10.3791/64840 (2023).

View Video