Summary

Differentiering af humane pluripotente stamceller i insulinproducerende øklynger

Published: June 23, 2023
doi:

Summary

Differentieringen af stamceller i øceller giver en alternativ løsning til konventionel diabetesbehandling og sygdomsmodellering. Vi beskriver en detaljeret stamcellekulturprotokol, der kombinerer et kommercielt differentieringssæt med en tidligere valideret metode til at hjælpe med at producere insulinudskillende, stamcelleafledte øer i en skål.

Abstract

Differentiering af humane pluripotente stamceller (hPSC’er) i insulinudskillende betaceller giver materiale til undersøgelse af betacellefunktion og diabetesbehandling. Der er dog stadig udfordringer med at opnå stamcelleafledte betaceller, der i tilstrækkelig grad efterligner indfødte humane betaceller. På baggrund af tidligere undersøgelser er hPSC-afledte øceller blevet genereret for at skabe en protokol med forbedrede differentieringsresultater og konsistens. Protokollen beskrevet her bruger et pancreas stamfadersæt i trin 1-4, efterfulgt af en protokol ændret fra et papir, der tidligere blev offentliggjort i 2014 (kaldet “R-protokol” i det følgende) i trin 5-7. Detaljerede procedurer for anvendelse af pancreas stamfadersæt og mikrobrøndplader med en diameter på 400 μm til generering af pancreas stamfaderklynger, R-protokol for endokrin differentiering i et 96-brønds statisk suspensionsformat og in vitro-karakterisering og funktionel evaluering af hPSC-afledte øer er inkluderet. Den komplette protokol tager 1 uge for indledende hPSC-ekspansion efterfulgt af ~ 5 uger for at opnå insulinproducerende hPSC-øer. Personale med grundlæggende stamcellekulturteknikker og træning i biologiske assays kan reproducere denne protokol.

Introduction

Pancreas beta-celler udskiller insulin, der reagerer på stigninger i blodsukkerniveauet. Patienter, der mangler tilstrækkelig insulinproduktion på grund af autoimmun destruktion af betaceller i type 1-diabetes (T1D)1 eller på grund af betacelledysfunktion i type 2-diabetes (T2D)2, behandles typisk med administration af eksogent insulin. På trods af denne livreddende behandling kan den ikke nøjagtigt matche den udsøgte kontrol af blodsukkeret, som opnås ved dynamisk insulinsekretion fra bona fide betaceller. Som sådan lider patienter ofte konsekvenserne af livstruende hypoglykæmiske episoder og andre komplikationer som følge af kroniske hyperglykæmiske udflugter. Transplantation af humane kadaverøer genopretter med succes stram glykæmisk kontrol hos T1D-patienter, men er begrænset af tilgængeligheden af ødonorer og vanskeligheder med at rense sunde øer til transplantation 3,4. Denne udfordring kan i princippet løses ved at anvende hPSC’er som alternativt udgangsmateriale.

Nuværende strategier til generering af insulinudskillende øer fra hPSC’er in vitro sigter ofte mod at efterligne processen med embryonal udvikling af bugspytkirtlen in vivo 5,6. Dette kræver kendskab til de ansvarlige signalveje og tidsbestemt tilsætning af tilsvarende opløselige faktorer for at efterligne kritiske stadier af den udviklende embryonale bugspytkirtel. Bugspytkirtelprogrammet starter med forpligtelsen til endelig endoderm, som er præget af transkriptionsfaktorer gaffelhovedboks A2 (FOXA2) og kønsbestemmende region Y-boks 17 (SOX17)7. Successiv differentiering af endelig endoderm involverer dannelsen af et primitivt tarmrør, mønster i en bageste fortarm, der udtrykker bugspytkirtlen og duodenal homeobox 1 (PDX1)7,8,9 og epitelekspansion til bugspytkirtelforfædre, der co-udtrykker PDX1 og NK6 homeobox 1 (NKX6.1)10,11.

Yderligere forpligtelse til endokrine øceller ledsages af den forbigående ekspression af pro-endokrin masterregulator neurogenin-3 (NGN3)12 og stabil induktion af nøgletranskriptionsfaktorer neuronal differentiering 1 (NEUROD1) og NK2 homeobox 2 (NKX2.2)13. De vigtigste hormonekspressive celler, såsom insulinproducerende betaceller, glukagonproducerende alfaceller, somatostatinproducerende deltaceller og pancreas polypeptidproducerende PPY-celler, programmeres efterfølgende. Med denne viden samt opdagelser fra omfattende lægemiddelscreeningsundersøgelser med høj kapacitet har nylige fremskridt muliggjort generering af hPSC-øer med celler, der ligner betaceller, der er i stand til insulinsekretion 14,15,16,17,18,19.

Trinvise protokoller er blevet rapporteret til generering af glukose-responsive betaceller 6,14,18,19. Bygget på disse undersøgelser involverer denne protokol brugen af et pancreas stamfadersæt til generering af PDX1+/NKX6.1+ stamceller i bugspytkirtlen i en plan kultur, efterfulgt af mikrobrøndpladeaggregering i klynger af ensartet størrelse og yderligere differentiering mod insulinudskillende hPSC-øer med R-protokollen i en statisk 3D-suspensionskultur. Kvalitetskontrolanalyser, herunder flowcytometri, immunfarvning og funktionel vurdering, udføres til streng karakterisering af de differentierende celler. Dette papir giver en detaljeret beskrivelse af hvert trin i den rettede differentiering og skitserer de vitro-karakteriseringsmetoderne.

Protocol

Denne protokol er baseret på arbejde med hPSC-linjer, herunder H1, HUES4 PDXeG og Mel1 INSGFP/W, under føderfrie forhold. En trinvis procedure er beskrevet i dette afsnit med understøttende data fra differentieringen af Mel1 INSGFP/W i afsnittet om repræsentative resultater. Vi anbefaler, at der er behov for yderligere optimering, når du arbejder med andre hPSC-linjer, der ikke er angivet her. Se materialetabellen for detaljer vedrørende alle reagenser og opløsninger, der anv…

Representative Results

Vi udviklede en hybridstrategi til at differentiere stamceller til insulinudskillende hPSC-øer i syv trin, som anvender et pancreasstamfadersæt til de første fire faser i plan kultur efterfulgt af en modificeret protokol bygget på en tidligere rapporteret metode6 i en statisk suspensionskultur i de sidste tre faser (figur 1). Med denne protokol er det afgørende at sikre en næsten sammenflydende (90% -100%) kultur 24 timer efter cellesåning (trin 0) for at start…

Discussion

Dette papir beskriver en syv-trins hybridprotokol, der muliggør generering af hPSC-øer, der er i stand til at udskille insulin ved glukoseudfordring inden for 40 dage efter dyrkning in vitro. Blandt disse mange trin menes effektiv induktion af endelig endoderm at sætte et vigtigt udgangspunkt for de endelige differentieringsresultater18,27,28. I producentens protokol anbefales en såtæthed på 2,6 × 105

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi anerkender taknemmeligt støtten fra STEMCELL Technologies, Michael Smith Health Research BC, Stem Cell Network, JDRF og Canadian Institutes of Health Research. Jia Zhao og Shenghui Liang er modtagere af Michael Smith Health Research BC Trainee Award. Mitchell J.S. Braam er modtager af Mitacs Accelerate Fellowship. Diepiriye G. Iworima er modtager af Alexander Graham Bell Canada Graduate Scholarship og CFUW 1989 Ecole Polytechnique Commemorative Award. Vi takker oprigtigt Dr. Edouard G. Stanley fra MCRI og Monash University for at dele Mel1 INS GFP / W-linjen og Alberta Diabetes Institute Islet Core for at isolere og distribuere menneskelige øer. Vi anerkender også støtten fra Life Sciences Institute Imaging and Flow Cytometry faciliteter ved University of British Columbia. Figur 1 blev oprettet med BioRender.com.

Materials

3,3’,5-Triiodo-L-thyronine (T3) Sigma T6397 Thyroid hormone
4% PFA solution Santa Cruz Biotechnology sc-281692 Should be handled in fume hood
96-Well, Ultralow Attachment, flat bottom Corning Costar (VWR) CLS3474 Flat bottom; for static suspension culture in the last three stages
Accutase STEMCELL Technologies 07920 Dissociation reagent for Stage 4 cells
Aggrewell400 plates STEMCELL Technologies 34415 400 µm diameter microwell plates
Aggrewell800 plates STEMCELL Technologies 34815 800 µm diameter microwell plates
Alexa Fluor 488 Goat anti-Human FOXA2 (goat IgG) R&D Systems IC2400G 1:100 in flow cytometry; used for assaying Stage 1 cells
Alexa Fluor 488 Goat IgG Isotype Control R&D Systems IC108G 1:100 in flow cytometry
Alexa Fluor 488 Mouse anti-Human SST (mouse IgG2B) BD Sciences 566032 1:250 in flow cytometry; used for assaying Stage 7 cells
Alexa Fluor 488 Mouse IgG2B Isotype Control R&D Systems IC0041G 1:500 in flow cytometry
Alexa Fluor 647 Mouse anti-Human C-peptide (mouse IgG1κ) BD Pharmingen 565831 1:2,000 in flow cytometry; used for assaying Stage 7 cells
Alexa Fluor 647 Mouse anti-Human INS (mouse IgG1κ) BD Sciences 565689 1:2,000 in flow cytometry
Alexa Fluor 647 Mouse anti-Human NKX6.1 (mouse IgG1κ) BD Sciences 563338 1:33 in flow cytometry; used for assaying Stage 4 cells
Alexa Fluor 647 Mouse anti-Human SOX17 (mouse IgG1κ) BD Sciences 562594 1:50 in flow cytometry; used for assaying Stage 1 cells
Alexa Fluor 647 Mouse IgG1κ Isotype Control BD Sciences 557714 1:50 in flow cytometry
ALK5i II Cayman Chemicals 14794 TGF-beta signaling inhibitor
Anti-Adherence Rinsing Solution  STEMCELL Technologies 7010 Microwell Rinsing Solution
Assay chamber Cellvis D35-10-1-N For static GSIS and confocal imaging purposes
Bovine serum albumin (BSA) Thermo Fisher Scientific BP1600-100 For immunostaining procedure
CK19 antibody DAKO M0888 1:50 in whole mount immunofluorescence
D-glucose Sigma G8769 Medium supplement
DAPI Sigma D9542 For nuclear counterstaining
DMEM/F12, HEPES Thermo Fisher Scientific 11330032 Matrix diluting solution
Donkey anti-goat Alexa Fluor 555 Life technologies A21432 1:500 in whole mount immunofluorescence
Donkey anti-goat Alexa Fluor 647 Life technologies A21447 1:500 in whole mount immunofluorescence
Donkey anti-mouse Alexa Fluor 555 Life technologies A31570 1:500 in whole mount immunofluorescence
Donkey anti-mouse Alexa Fluor 647 Life technologies A31571 1:500 in whole mount immunofluorescence
Donkey anti-rabbit Alexa Fluor 555 Life technologies A31572 1:500 in whole mount immunofluorescence
Donkey anti-rabbit Alexa Fluor 647 Life technologies A31573 1:500 in whole mount immunofluorescence
Donkey anti-sheep Alexa Fluor 647 Life technologies A21448 1:500 in whole mount immunofluorescence
DPBS Sigma D8537 Without Ca2+ and Mg2+
ELISA, insulin, human Alpco 80-INSHU-E01.1 For human insulin measurement
Fatty acid-free BSA Proliant 68700 Medium supplement
Fixation and Permeabilization Solution Kit BD Sciences 554714 Fix/Perm and 10x Perm/Wash solutions included
Gentle Cell Dissociation Reagent STEMCELL Technologies 7174 For clump passaging hPSCs during maintenance culture
Glucagon antibody Sigma G2654 1:400 in whole mount immunofluorescence
GLUT1 antibody Thermo Fisher Scientific PA1-37782 1:200 in whole mount immunofluorescence
GlutaMAX-I (100x) Gibco 35050061 L-glutamine supplement
Glycerol Thermo Fisher Scientific G33-4 For tissue clearing and mounting
GSi XX Sigma Millipore 565789 Notch inhibitor
Heparin Sigma H3149 Medium supplement
ITS-X (100x) Thermo Fisher Scientific 51500056 Insulin-Transferrin-Selenium-Ethanolamine; medium supplement
LDN193189  STEMCELL Technologies 72147 BMP antagonist
MAFA antibody Abcam ab26405 1:200 in whole mount immunofluorescence
Matrigel, hESC-qualified Thermo Fisher Scientific 08-774-552 Extracellular matrix for vessel surface coating
MCDB131 medium Life technologies 10372019 Base medium
mTeSR1 Complete Kit STEMCELL Technologies 85850 stem cell medium and 5x supplement included
N-Cys (N-acetyl cysteine) Sigma A9165 Antioxidant
NaHCO3 Sigma S6297 Medium supplement
NEUROD1 antibody R&D Systems AF2746 1:20 in whole mount immunofluorescence
NKX6.1 antibody DSHB F55A12-c 1:50 in whole mount immunofluorescence
Pancreatic polypeptide antibody R&D Systems AF6297 1:200 in whole mount immunofluorescence
PBS Sigma D8662 With Ca2+ and Mg2+
PDX1 antibody Abcam ab47267 1:200 in whole mount immunofluorescence
PE Mouse anti-Human GCG (mouse IgG1κ) BD Sciences 565860 1:2,000 in flow cytometry; used for assaying Stage 7 cells
PE Mouse anti-Human NKX6.1 (mouse IgG1k) BD Sciences 563023 1:250 in flow cytometry
PE Mouse anti-Human PDX1 (mouse IgG1k) BD Sciences 562161 1:200 in flow cytometry; used for assaying Stage 4 cells
PE Mouse IgG1κ Isotype Control BD Sciences 554680 1:2,000 in flow cytometry
PE Mouse-Human Chromogranin A (CHGA, mouse IgG1k) BD Sciences 564563 1:200 in flow cytometry
R428  Cayman Chemicals 21523 AXL tyrosine kinase inhibitor
Retinoid acid, all-trans Sigma R2625 Light-sensitive
RIPA lysis buffer, 10x Sigma 20-188 For hormone extraction
SANT-1 Sigma S4572 SHH inhibitor
SLC18A1 antibody Sigma HPA063797 1:200 in whole mount immunofluorescence
Somatostatin antibody Sigma HPA019472 1:100 in whole mount immunofluorescence
STEMdiff Pancreatic Progenitor Kit STEMCELL Technologies 05120 Basal media and supplements included
Synaptophysin antibody Novus NB120-16659 1:25 in whole mount immunofluorescence
Triton X-100 Sigma X100 For permeabilization
Trolox  Sigma Millipore 648471 Vitamin E analog
TrypLE Enzyme Express Life technologies 12604-021 cell dissociation enzyme reagent for single cell passaging hPSCs
Trypsin1/2/3 antibody R&D Systems AF3586 1:25 in whole mount immunofluorescence
Y-27632 STEMCELL Technologies 72304 ROCK inhibitor
Zinc sulfate Sigma Z0251 Medium supplement

Referências

  1. Atkinson, M. A., Eisenbarth, G. S., Michels, A. W. Type 1 diabetes. Lancet. 383 (9911), 69-82 (2014).
  2. Petersen, M. C., Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiological Reviews. 98 (4), 2133-2223 (2018).
  3. Shapiro, A. M., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. The New England Journal of Medicine. 343 (4), 230-238 (2000).
  4. Gamble, A., Pepper, A. R., Bruni, A., Shapiro, A. M. J. The journey of islet cell transplantation and future development. Islets. 10 (2), 80-94 (2018).
  5. Pagliuca, F. W., et al. Generation of functional human pancreatic beta cells in vitro. Cell. 159 (2), 428-439 (2014).
  6. Rezania, A., et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology. 32 (11), 1121-1133 (2014).
  7. Jennings, R. E., et al. Development of the human pancreas from foregut to endocrine commitment. Diabetes. 62 (10), 3514-3522 (2013).
  8. Jorgensen, M. C., et al. An illustrated review of early pancreas development in the mouse. Endocrine Reviews. 28 (6), 685-705 (2007).
  9. Jensen, J. Gene regulatory factors in pancreatic development. Developmental Dynamics. 229 (1), 176-200 (2004).
  10. Hald, J., et al. Generation and characterization of Ptf1a antiserum and localization of Ptf1a in relation to Nkx6.1 and Pdx1 during the earliest stages of mouse pancreas development. Journal of Histochemistry and Cytochemistry. 56 (6), 587-595 (2008).
  11. Villasenor, A., Chong, D. C., Henkemeyer, M., Cleaver, O. Epithelial dynamics of pancreatic branching morphogenesis. Development. 137 (24), 4295-4305 (2010).
  12. Rukstalis, J. M., Habener, J. F. Neurogenin3: a master regulator of pancreatic islet differentiation and regeneration. Islets. 1 (3), 177-184 (2009).
  13. Mastracci, T. L., Anderson, K. R., Papizan, J. B., Sussel, L. Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genetics. 9 (2), e1003278 (2013).
  14. Balboa, D., et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nature Biotechnology. 40 (7), 1042-1055 (2022).
  15. Du, Y., et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nature Medicine. 28 (2), 272-282 (2022).
  16. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L., Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nature Biotechnology. 38 (4), 460-470 (2020).
  17. Yoshihara, E., et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature. 586 (7830), 606-611 (2020).
  18. Mahaddalkar, P. U., et al. Generation of pancreatic beta cells from CD177(+) anterior definitive endoderm. Nature Biotechnology. 38 (9), 1061-1072 (2020).
  19. Liang, S., et al. Differentiation of stem cell-derived pancreatic progenitors into insulin-secreting islet clusters in a multiwell-based static 3D culture system. Cell Reports Methods. 3, 10046 (2023).
  20. Zhao, J., et al. In vivo imaging of beta-cell function reveals glucose-mediated heterogeneity of beta-cell functional development. Elife. 8, e41540 (2019).
  21. Zhao, J., et al. In vivo imaging of calcium activities from pancreatic beta-cells in zebrafish embryos using spinning-disc confocal and two-photon light-sheet microscopy. Bio-protocol. 11 (23), e4245 (2021).
  22. Liang, S., et al. Carbon monoxide enhances calcium transients and glucose-stimulated insulin secretion from pancreatic beta-cells by activating phospholipase C signal pathway in diabetic mice. Biochemical and Biophysical Research Communications. 582, 1-7 (2021).
  23. Bruin, J. E., et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia. 56 (9), 1987-1998 (2013).
  24. Toyoda, T., et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Research. 14 (2), 185-197 (2015).
  25. Russ, H. A., et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO Journal. 34 (13), 1759-1772 (2015).
  26. Veres, A., et al. Charting cellular identity during human in vitro beta-cell differentiation. Nature. 569 (7756), 368-373 (2019).
  27. D’Amour, K. A., et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology. 23 (12), 1534-1541 (2005).
  28. Jiang, Y., et al. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Reports. 16 (9), 2395-2409 (2021).
  29. Tran, R., Moraes, C., Hoesli, C. A. Controlled clustering enhances PDX1 and NKX6.1 expression in pancreatic endoderm cells derived from pluripotent stem cells. Scientific Reports. 10 (1), 1190 (2020).
  30. Mamidi, A., et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 564 (7734), 114-118 (2018).
  31. Rezania, A., et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 31 (11), 2432-2442 (2013).
  32. Sander, M., et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development. 127 (24), 5533-5540 (2000).
check_url/pt/64840?article_type=t

Play Video

Citar este artigo
Zhao, J., Liang, S., Braam, M. J. S., Baker, R. K., Iworima, D. G., Quiskamp, N., Kieffer, T. J. Differentiation of Human Pluripotent Stem Cells into Insulin-Producing Islet Clusters. J. Vis. Exp. (196), e64840, doi:10.3791/64840 (2023).

View Video