Summary

用于卵巢病变经阴道成像的共注册超声和光声成像方案

Published: March 03, 2023
doi:

Summary

我们报告了一种用于卵巢/附件病变经阴道成像的共同注册超声和光声成像方案。该协议可能对其他转化光声成像研究有价值,特别是那些使用商业超声阵列检测光声信号和标准延迟和波束形成算法进行成像的研究。

Abstract

卵巢癌仍然是所有妇科恶性肿瘤中最致命的,因为缺乏可靠的筛查工具进行早期发现和诊断。光声成像或断层扫描 (PAT) 是一种新兴的成像方式,可以提供卵巢/附件病变的总血红蛋白浓度(相对量表,rHbT)和血氧饱和度 (%sO2),这是癌症诊断的重要参数。结合共同注册超声(美国),PAT在检测卵巢癌和准确诊断卵巢病变方面显示出巨大的潜力,以进行有效的风险评估并减少良性病变的不必要手术。然而,据我们所知,临床应用中的PAT成像方案在不同的研究中有很大差异。在这里,我们报告了一种经阴道卵巢癌成像方案,该方案可能对其他临床研究有益,特别是那些使用商业超声阵列检测光声信号和标准延迟和波束形成算法进行成像的研究。

Introduction

光声成像或断层扫描 (PAT) 是一种混合成像方式,可测量美国分辨率和深度远超组织光学扩散极限 (~1 mm) 的光吸收分布。在PAT中,纳秒激光脉冲用于激发生物组织,由于光学吸收而导致瞬态温升。这导致初始压力上升,由此产生的光声波由美国换能器测量。多光谱PAT涉及使用可调谐激光器或在不同波长下工作的多个激光器来照亮组织,从而能够重建多个波长的光学吸收图。基于近红外(NIR)窗口内氧合和脱氧血红蛋白的差异吸收,多光谱PAT可以计算出氧合和脱氧血红蛋白浓度、总血红蛋白浓度和血氧饱和度的分布,这些都是与肿瘤血管生成和血液氧合消耗或肿瘤代谢相关的功能生物标志物。PAT在许多肿瘤学应用中都取得了成功,例如卵巢癌12,乳腺癌345,皮肤6,甲状腺癌78,宫颈9,前列腺癌1011和结直肠癌12

卵巢癌是所有妇科恶性肿瘤中最致命的。只有38%的卵巢癌在早期(局部或区域)阶段被诊断出来,其中5年生存率为74.2%至93.1%。大多数在晚期诊断,其 5 年生存率为 30.8% 或更低13.目前的临床诊断方法,包括经阴道超声检查(TUS)、多普勒超声、血清癌抗原125(CA 125)和人附睾蛋白4(HE4),被证明对早期卵巢癌诊断缺乏敏感性和特异性141516。此外,大部分良性卵巢病变可能难以用当前的成像技术准确诊断,这导致不必要的手术,增加医疗成本和手术并发症。因此,需要更多准确的非侵入性方法来对附件肿块进行风险分层,以优化管理和结果。显然,需要一种对早期卵巢癌敏感和特异性的技术,并且更准确地从良性病变中识别恶性。

我们小组通过结合临床US系统,用于容纳用于光传递的光纤的定制探针鞘和可调谐激光器1,开发了用于卵巢癌诊断的经阴道US和PAT系统(USPAT)。来自USPAT系统的总血红蛋白浓度(相对量表,rHbT)和血氧饱和度(%sO2)已显示出检测早期卵巢癌和准确诊断卵巢病变以进行有效风险评估和减少不必要的良性病变手术的巨大潜力12。目前的系统原理图如图1所示,控制框图如图2所示。该策略有可能整合到现有的TUS卵巢癌诊断方案中,同时提供功能参数(rHbT,%sO2)以提高TUS的敏感性和特异性。

Protocol

所有进行的研究都得到了华盛顿大学机构审查委员会的批准。 1. 系统配置:光学照明(图1) 使用 Nd:YAG 激光器泵浦 10 Hz 的脉冲可调谐 (690-890 nm) 钛蓝宝石激光器。 通过首先用平凹透镜发散光束,然后用平凸透镜准直光束来扩展激光束。使用两个反射镜将光束引导到分束器上(如下所述)。 通过使用?…

Representative Results

在这里,我们展示了USPAT成像的恶性和正常卵巢病变的示例。图 3 显示一名 50 岁的绝经前女性,对比增强 CT 显示双侧多囊附件肿块。 图 3A 显示了左侧附件的美国图像,ROI 标记了囊性病变内的可疑实体结节。 图3B 显示了叠加在美国并以红色显示的PAT rHbT图。rHbT在1 cm至5 cm的深度范围内显示出广泛的弥漫性血管分布,水平高达17.1?…

Discussion

光学照明
使用的光纤数量基于两个因素:光照明均匀性和系统复杂性。在皮肤表面具有均匀的光照明图案以避免热点至关重要。同样重要的是,用最少的光纤保持系统的简单和稳健。以前,使用四根独立的光纤已被证明是在几毫米及以上的深度产生均匀照明的最佳选择。此外,与四根光纤的光耦合相对简单和坚固,符合患者研究的需要。我们之前已经证明,使用四根1 mm芯多模光纤…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NCI(R01CA151570,R01CA237664)的支持。作者感谢由Mathew Powell博士领导的整个GYN肿瘤学小组帮助招募患者,放射科医生Cary Siegel,William Middleton和Malak Itnai博士帮助美国研究,以及病理学家Ian Hagemann博士帮助病理学解释数据。作者非常感谢Megan Luther和GYN研究协调员在协调研究时间表,确定研究患者和获得知情同意方面所做的努力。

Materials

Clinical US imaging system Alpinion Medical Systems EC-12R Fully programmable clinical US system
Dielectric mirror Thorlabs BB1-E03 Used to reflect light along the optical path
Endocavity US transducer Alpinion Medical Systems EC3-10 Transvaginal ultrasound probe
Laser power meter Coherent LabMax TOP Used to measure laser energy
Multi-mode optical fiber Thorlabs FP1000ERT Couple laser light to the endocavity ultrasound probe
Non-polarizing beam splitter plate Thorlabs BSW11 For splitting laser beam into sensors to measure energy
Plano-concave lens Thorlabs LC1715 For laser beam expansion
Plano-convex lens  Thorlabs LA1484-B For laser beam collimation
Plano-convex lens  Thorlabs LA1433-B Used to focus light into four optical fibers
Polarizing beam splitter cube Thorlabs PBS252 For splitting laser beam into four beams
Protective probe shealth Custom 3D printed Hold and protect the four optical fibers at the tip of the ultrasound probe
Right angle prism mirror Thorlabs MRA25-E03 Used to reflect light along the optical path
Tunable laser system Symphotic TII LS-2145-LT50PC Light source for multispectral PAT
USPAT control software Custom developed in C++ Controls acquisition parameters of the ultrasound machine and the laser wavelength
USPAT image display software Custom developed in C++ Displays the US/PAT B-scans and sO2/rHbT maps in real time

Referências

  1. Nandy, S., et al. Evaluation of ovarian cancer: Initial application of coregistered photoacoustic tomography and US. Radiology. 289 (3), 740-747 (2018).
  2. Amidi, E., et al. Role of blood oxygenation saturation in ovarian cancer diagnosis using multi-spectral photoacoustic tomography. Journal of Biophotonics. 14 (4), 202000368 (2021).
  3. Dogan, B. E., et al. Optoacoustic imaging and gray-scale US features of breast cancers: Correlation with molecular subtypes. Radiology. 292 (3), 564-572 (2019).
  4. Menezes, G. L. G., et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging. Radiology. 288 (2), 355-365 (2018).
  5. Neuschler, E. I., et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: A new evaluation tool for radiologists. Radiology. 287 (2), 398-412 (2018).
  6. von Knorring, T., Mogensen, M. Photoacoustic tomography for assessment and quantification of cutaneous and metastatic malignant melanoma – A systematic review. Photodiagnosis and Photodynamic Therapy. 33, 102095 (2021).
  7. Han, S., Lee, H., Kim, C., Kim, J. Review on multispectral photoacoustic analysis of cancer: Thyroid and breast. Metabolites. 12 (5), 382 (2022).
  8. Kim, J., et al. Multiparametric photoacoustic analysis of human thyroid cancers in vivo. Pesquisa do Câncer. 81 (18), 4849-4860 (2021).
  9. Basij, M., Karpiouk, A., Winer, I., Emelianov, S., Mehrmohammadi, M. Dual-illumination ultrasound/photoacoustic system for cervical cancer imaging. IEEE Photonics Journal. 13 (1), 6900310 (2021).
  10. Agrawal, S., et al. development, and multi-characterization of an integrated clinical transrectal ultrasound and photoacoustic device for human prostate imaging. Diagnostics. 10 (8), 566 (2020).
  11. Kothapalli, S. -. R., et al. Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Science Translational Medicine. 11 (507), 2169 (2019).
  12. Leng, X., et al. Assessing rectal cancer treatment response using coregistered endorectal photoacoustic and US imaging paired with deep learning. Radiology. 299 (2), 349-358 (2021).
  13. Surveillance, Epidemiology, and End Results Program. Cancer of the Ovary – Cancer Stat Facts. National Cancer Institute Available from: https://seer.cancer.gov/statfacts/html/ovary.html (2022)
  14. Temkin, S. M., et al. Outcomes from ovarian cancer screening in the PLCO trial: Histologic heterogeneity impacts detection, overdiagnosis and survival. European Journal of Cancer. 87, 182-188 (2017).
  15. Kobayashi, H., et al. A randomized study of screening for ovarian cancer: A multicenter study in Japan. International Journal of Gynecological Cancer. 18 (3), 414-420 (2008).
  16. Andreotti, R. F., et al. O-RADS US risk stratification and management system: A consensus guideline from the ACR ovarian-adnexal reporting and data system committee. Radiology. 294 (1), 168-185 (2020).
  17. Salehi, H. S., et al. Design of optimal light delivery system for coregistered transvaginal ultrasound and photoacoustic imaging of ovarian tissue. Photoacoustics. 3 (3), 114-122 (2015).
  18. Oppenheim, A. V., Schafer, R. W. . Digital Signal Processing. , (1975).
  19. Zou, Y., Amidi, E., Luo, H., Zhu, Q. Ultrasound-enhanced Unet model for quantitative photoacoustic tomography of ovarian lesions. Photoacoustics. 28, 100420 (2022).
  20. Prince, J. L., Links, J. M. . Medical Imaging Signals and Systems. , (2006).
  21. Kim, J., et al. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System. Scientific Reports. 6, 35137 (2016).
check_url/pt/64864?article_type=t

Play Video

Citar este artigo
Nie, H., Luo, H., Chen, L., Zhu, Q. A Coregistered Ultrasound and Photoacoustic Imaging Protocol for the Transvaginal Imaging of Ovarian Lesions. J. Vis. Exp. (193), e64864, doi:10.3791/64864 (2023).

View Video