Summary

刺激响应水凝胶软机器人的四维打印

Published: January 13, 2023
doi:

Summary

这份手稿描述了一种4D打印策略,用于制造智能刺激响应软机器人。这种方法可以为促进智能形状可变形软机器人系统的实现提供基础,包括智能机械手、电子和医疗保健系统。

Abstract

本协议描述了使用三维(3D)生物打印方法创建四维(4D),时间依赖性,形状可变,刺激响应软机器人。最近,4D打印技术被广泛提出作为开发形状可变形软机器人的创新新方法。特别是,4D随时间变化的形状转换是软机器人中的一个重要因素,因为它允许在由外部线索(如热,pH和光)触发时在正确的时间和地点发生有效的功能。根据这一观点,可以打印刺激响应材料,包括水凝胶、聚合物和杂化材料,以实现智能形状可变形的软机器人系统。目前的协议可用于制造由 N-异丙基丙烯酰胺(NIPAM)基水凝胶组成的热响应软夹具,整体尺寸从毫米到厘米不等。预计本研究将为智能机械手(如抓手、执行器和拾取和放置机)、医疗保健系统(如药物胶囊、活检工具和显微手术)和电子(如可穿戴传感器和流体)等各种应用的智能软机器人系统提供新的方向。

Introduction

从技术和智力的角度来看,刺激响应软机器人的开发都很重要。术语刺激响应软机器人通常是指由水凝胶、聚合物、弹性体或混合体组成的设备/系统,这些设备/系统响应外部线索(如热量、pH 值和光)而表现出形状变化1234在众多刺激响应软机器人中,基于N-异丙基丙烯酰胺(NIPAM)水凝胶的软机器人使用自发形状转换5678执行所需的任务或相互作用。通常,基于NIPAM的水凝胶表现出低临界溶液温度(LCST),并且在32°C和36°C之间的生理温度附近的水凝胶系统内发生溶胀(亲水性低于LCST)和脱胀(疏水性高于LCST)性能变化910。LCST尖锐临界过渡点附近的这种可逆溶胀机制可以产生基于NIPAM的水凝胶软机器人2的形状转变。因此,基于热响应NIPAM的水凝胶软机器人具有改进的操作,例如行走,抓取,爬行和传感,这在多功能机械手,医疗保健系统和智能传感器中非常重要23411,12,13,14,15,16,17 18,192021.

在制造刺激响应软机器人时,三维(3D)打印方法已广泛使用,使用直接逐层加法工艺22。各种材料,如塑料和软水凝胶,可以用3D打印2324打印。最近,4D打印被广泛强调为一种用于创建形状可编程软机器人25,262728的创新技术。这种4D打印基于3D打印,4D打印的关键特征是3D结构可以随着时间的推移改变其形状和属性。4D打印和刺激响应水凝胶的结合提供了另一种创新途径,以创建智能3D设备,当暴露于适当的外部刺激触发器(如热,pH,光以及磁场和电场)时,这些设备会随着时间的推移而改变形状25262728.这种使用各种刺激响应水凝胶的4D打印技术的发展为形状可变形的软机器人的出现提供了机会,这些机器人具有更高的响应速度和反馈灵敏度,可以显示多功能性。

本研究描述了3D打印驱动的热响应软夹持器的创建,该夹具显示形状转换和运动。值得注意的是,所描述的特定程序可用于制造各种多功能软机器人,其整体尺寸范围从毫米到厘米长度尺度。最后,预计该协议可以应用于多个领域,包括软机器人(例如,智能执行器和运动机器人),柔性电子(例如,光电传感器和芯片实验室)和医疗保健系统(例如,药物输送胶囊,活检工具和手术设备)。

Protocol

刺激响应软夹具由三种不同类型的水凝胶组成:非刺激响应丙烯酰胺(AAm)基水凝胶,热响应N-异丙基丙烯酰胺(NIPAM)基水凝胶和 磁性响应铁凝胶(图1)。这三种水凝胶油墨是通过修改先前发表的方法29、30、31制备的。本研究中提供的数据可应通讯作者的要求获得。 1. ?…

Representative Results

在设计热响应软夹具时主要考虑基于NIPAM的水凝胶,因为它具有锋利的LCST,这使其表现出显着的溶胀性能9,10。此外,基于AAm的水凝胶被认为是一种非刺激响应系统,以最大限度地提高软混合夹具的形状转换,同时减少多次加热和冷却过程中界面的分层。此外,铁凝胶被集成到该混合系统中,以创建磁场响应的软混合夹具,用于磁场驱动的运动的不受?…

Discussion

在软混合夹持器的材料选择方面,首先制备了由非刺激响应AAm基水凝胶、热响应NIPAM基水凝胶和磁响应铁凝胶组成的多响应材料体系,使软混合夹持器表现出可编程的运动和形状转换。由于其热响应溶胀-溶胀特性,基于NIPAM的水凝胶在用具有不同溶胀特性的水凝胶(例如AAm基水凝胶1)制造为双层或双条结构时表现出弯曲,折叠或起皱。此外,水凝胶可以通过嵌入氧化铁(Fe2</…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者非常感谢韩国政府(MSIT)资助的韩国国家研究基金会(NRF)资助的支持(No.2022R1F1A1074266)。

Materials

2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Sigma Aldrich 410896-50G Irgacure 2959, photoinitiator
3D WOX 2X sindoh n/a 3D printer for fabricating a maze
Acrylamide Sigma-Aldrich 29-007 ≥99%
Airbrush compressor WilTec AF18-2
Ammonium persulfate Sigma Aldrich A4418
Auto CAD Autodesk n/a software for computer-aided-design file
BLX UV crosslinker BIO-LINK U01-133-565
Cartridge CELLINK CSC010300102
Digital stirring Hot Plates Corning 6798-420D
Fluorescein O-methacrylate Sigma Aldrich 568864 dye of AAm gel
INKREDIBLE+ bioprinter CELLINK n/a
Iron(III) Oxide red DUKSAN general science I0231
Laponite RD BYK n/a nanoclay
Microcentrifuge tube SPL 60615
Micro stirrer bar Cowie 27-00360-08 Φ3×Equation 1
N, N, N', N'-tetramethylethylenediamine Sigma Aldrich T7024-100ML
N, N'-methylenebisacrylamide Sigma Aldrich M7279 ≥99.5%
N-isopropylacrylamide Sigma-Aldrich 415324-50G
Poly(N-isopropylacrylamide) Sigma-Aldrich 535311
Rhodamine 6G Sigma Aldrich R4127 dye of NIPAM gel
Slic3r software (v1.2.9) Slic3r n/a open-source software to convert .stl file to gcode
Sodium hydroxide beads Sigma Aldrich S5881
Sterile high-precision conical bioprinting nozzles CELLINK NZ3270005001 22 G, 25 G
Syringe Korea vaccine K07415389 10 CC 21 G (1-1/4 INCH)
Vortex mixer DAIHAN DH.WVM00030

Referências

  1. Gracias, D. H. Stimuli responsive self-folding using thin polymer films. Current Opinion in Chemical Engineering. 2 (1), 112-119 (2013).
  2. Zhang, Y. S., Khademhosseini, A. Advances in engineering hydrogels. Science. 356 (6337), (2017).
  3. Erol, O., Pantula, A., Liu, W., Gracias, D. H. Transformer hydrogels: A review. Advanced Materials Technologies. 4 (4), 1900043 (2019).
  4. Liu, X., Liu, J., Lin, S., Zhao, X. Hydrogel machines. Materials Today. 36, 102-124 (2020).
  5. Hu, Z., Zhang, X., Li, Y. Synthesis and application of modulated polymer gels. Science. 269 (5223), 525-527 (1995).
  6. Klein, Y., Efrati, E., Sharon, E. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science. 315 (5815), 1116-1120 (2007).
  7. Kim, J., Hanna, J. A., Byun, M., Santangelo, C. D., Hayward, R. C. Design responsive buckled surfaces by halftone gel lithography. Science. 335 (6073), 1201-1205 (2012).
  8. Breger, J. C., et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Applied Materials & Interfaces. 7 (5), 3398-3405 (2015).
  9. Schild, H. G. Poly (N-isopropylacrylamide): Experiment, theory and application. Progress in Polymer Science. 17 (2), 163-249 (1992).
  10. Ahn, S., Kasi, R. M., Kim, S. -. C., Sharma, N., Zhou, Y. Stimuli-responsive polymer gels. Soft Matter. 4, 1151-1157 (2008).
  11. Stuart, M. A., et al. Emerging applications of stimuli-responsive polymer materials. Nature Materials. 9, 101-113 (2010).
  12. Ionov, L. Biomimetic hydrogel-based actuating systems. Advanced Functional Materials. 23 (36), 4555-4570 (2013).
  13. Ghosh, A., et al. Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery. Frontiers in Mechanical Engineering. 3, 7 (2017).
  14. Kirillova, A., Ionov, L. Shape-changing polymers for biomedical applications. Journal of Materials Chemistry B. 7, 1597-1624 (2019).
  15. Le, X., Lu, W., Zhang, J., Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Advanced Science. 6 (5), 1801584 (2019).
  16. Xu, W., Gracias, D. H. Soft three-dimensional robots with hard two-dimensional materials. ACS Nano. 13 (5), 4883-4892 (2019).
  17. Yoon, C. K. Advances in biomimetic stimuli responsive soft grippers. Nano Convergence. 6, 20 (2019).
  18. Lee, Y., Song, W. J., Sun, J. Y. Hydrogel soft robotics. Materials Today Physics. 15, 100258 (2020).
  19. Shen, Z., Chen, F., Zhu, X., Yong, K. T., Gu, G. Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B. 8, 8972-8991 (2020).
  20. Kim, H., et al. Shape morphing smart 3D actuator materials for micro soft robot. Materials Today. 41, 243-269 (2020).
  21. Ding, M., et al. Multifunctional soft machines based on stimuli-responsive hydrogels: From freestanding hydrogels to smart integrated systems. Materials Today Advances. 8, 100088 (2020).
  22. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering. 110, 442-458 (2017).
  23. Bartlett, N. W., et al. A 3D-printed, functionally graded soft robot powered by combustion. Science. 349 (6244), 161-165 (2015).
  24. Wehner, M., et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature. 536, 451-455 (2016).
  25. Tibbits, S. 4D printing: Multi-material shape change. Architectural Design. 84 (1), 116-121 (2014).
  26. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., Lewis, J. A. Biomimetic 4D printing. Nature Materials. 15, 413-418 (2016).
  27. Momeni, F., Hassani, S. M., Liu, X., Ni, J. A review of 4D printing. Materials & Design. 125, 42-79 (2017).
  28. Ionov, L. 4D biofabrication: Materials, methods, and applications. Advanced Healthcare Materials. 7 (17), 1800412 (2018).
  29. Liu, J., et al. Dual-gel 4D printing of bioinspired tubes. ACS Applied Materials & Interfaces. 11 (8), 8492-8498 (2019).
  30. Son, H., et al. Untethered actuation of hybrid hydrogel gripper via ultrasound. ACS Macro Letters. 9 (12), 1766-1772 (2020).
  31. Ding, Z., Salim, A., Ziaie, B. Squeeze-film hydrogel deposition and dry micropatterning. Analytical Chemistry. 82 (8), 3377-3382 (2010).
  32. Ongaro, F., et al. Autonomous planning and control of soft untethered grippers in unstructured environments. Journal of Micro-Bio Robotics. 12, 45-52 (2017).
  33. Scheggi, S., et al. Magnetic motion control and planning of untethered soft grippers using ultrasound image feedback. 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE. , 6156-6161 (2017).
check_url/pt/64870?article_type=t

Play Video

Citar este artigo
Lee, Y., Choi, J., Choi, Y., Park, S. M., Yoon, C. Four-Dimensional Printing of Stimuli-Responsive Hydrogel-Based Soft Robots. J. Vis. Exp. (191), e64870, doi:10.3791/64870 (2023).

View Video