Summary

Levedygtighedsanalyse af Trichoderma stromaticum conidia inde i humant perifert blod mononukleart afledt makrofager

Published: October 20, 2023
doi:

Summary

Teknikken, der involverer fagocytose af svampekonidier ved makrofager, anvendes i vid udstrækning til undersøgelser, der evaluerer moduleringen af immunresponserne mod svampe. Formålet med dette manuskript er at præsentere en metode til evaluering af fagocytose og clearance evner af humant perifert blod mononukleare-afledte makrofager stimuleret med Trichoderma stromaticum conidier.

Abstract

Makrofager repræsenterer en afgørende forsvarslinje og er ansvarlige for at forhindre vækst og kolonisering af patogener i forskellige væv. Conidial fagocytose er en nøgleproces, der muliggør undersøgelse af de cytoplasmatiske og molekylære begivenheder involveret i makrofagpatogeninteraktioner samt til bestemmelse af dødstidspunktet for internaliserede konidier. Teknikken, der involverer fagocytose af svampekonidier ved makrofager, anvendes i vid udstrækning til undersøgelser, der evaluerer moduleringen af immunresponserne mod svampe. Unddragelse af fagocytose og flugt af fagosomer er mekanismer for svampevirulens. Her rapporterer vi de metoder, der kan bruges til analyse af fagocytose, clearance og levedygtighed af T. stromaticum conidia, en svamp, der anvendes som biokontrol- og biogødningsmiddel og er i stand til at fremkalde humane infektioner. Protokollen består af 1) Trichoderma-kultur , 2) vask for at opnå konidier, 3) isolering af mononukleære celler i perifert blod (PBMC’er) ved anvendelse af polysaccharoseopløsningsmetoden og differentiering af PBMC’erne i makrofager, 4) en in vitro-fagocytosemetode ved anvendelse af runde glasdæksler og farvning og 5) et clearanceassay til vurdering af konidiernes levedygtighed efter fagocytose af konidier. Sammenfattende kan disse teknikker bruges til at måle svampeclearance effektivitet af makrofager.

Introduction

Trichoderma-slægten (Order: Hypocreales, Family: Hypocreaceae) består af allestedsnærværende, saprofytiske svampe, der er parasitter af andre svampearter og er i stand til at producere en række kommercielt nyttige enzymer1. Disse svampearter anvendes til fremstilling af heterologe proteiner2, fremstilling af cellulose3, ethanol, øl, vin og papir4, i tekstilindustrien5, fødevareindustrien6 og i landbruget som biologiske bekæmpelsesmidler 7,8. Ud over den industrielle interesse for disse svampearter har det stigende antal infektioner hos mennesker givet nogle Trichoderma-arter status som opportunistiske patogener9.

Trichoderma spp. vokser hurtigt i kultur, med oprindeligt hvide og bomuldsagtige kolonier, der bliver grønlig gul til mørkegrøn10. De er tilpasset til at leve i en bred vifte af pH- og temperaturforhold, og de opportunistiske arter er i stand til at overleve ved fysiologisk pH og temperaturer og dermed kolonisere forskellige humane væv 11,12,13. Det er vigtigt, at stigningen i infektionshastigheden for Trichoderma spp. kan være forbundet med virulensfaktorer, og disse er ikke godt undersøgt. Derudover er undersøgelser, der fokuserer på at forstå immunresponset mod opportunistiske Trichoderma-arter, stadig sjældne.

Under en infektion, sammen med neutrofiler, repræsenterer makrofager forsvarslinjen, der er ansvarlig for fagocytose, og forhindrer således vækst og kolonisering af patogener i forskellige væv. Ved hjælp af mønstergenkendelsesreceptorer, såsom tolllignende receptorer og C-type lektinreceptorer, makrofager fagocytosesvampe og behandler dem til fagosomer, hvilket fremmer et åndedrætsudbrud, frigivelsen af proinflammatoriske cytokiner og ødelæggelsen af de fagocytoserede mikroorganismer14. Fagocytosemekanismen kan imidlertid påvirkes og undgås af forskellige mikrobielle strategier, såsom svampecellernes størrelse og form; tilstedeværelsen af kapsler, der forhindrer fagocytose; faldende antallet af fagocytose-inducerende receptorer; ombygning af strukturen af actinfibre i cytoplasmaet; hindrer dannelsen af pseudopodier; og fagosom- eller fagosomflugt efter fagocytoseprocessen14.

Mange patogener, herunder Cryptococcus neoformans, bruger makrofager som en niche til at overleve i værten, sprede og fremkalde infektion15. Phagocytose og clearance assay bruges til at evaluere immunresponset mod patogener og til at identificere de mikrobielle strategier, der anvendes til at undgå det medfødte immunsystem 15,16,17. Denne type teknik kan også bruges til at undersøge differentialkinetikken af fagocytose, forsinket fagosomforsuring og oxidativ burst, der resulterer i reduceret svampedræbning18.

Forskellige metoder kan bruges til at evaluere fagocytose, svampeoverlevelse og unddragelse af fagosommodningsprocessen. Disse omfatter fluorescensmikroskopi, som bruges til at observere fagocytose, den cellulære placering og molekylerne produceret under fagocytose19; flowcytometri, som giver kvantitative data om fagocytose og bruges til at evaluere de forskellige markører, der er involveret i processen 20,21; intravital mikroskopi, som bruges til at vurdere mikrobiel indfangning og fagosommodning22; antistofmedieret fagocytose, som anvendes til at vurdere specificiteten af fagocytoseprocessen for et patogen23; og andre 24,25,26,27.

Protokollen, der præsenteres her, anvender en almindelig, billig og direkte metode ved hjælp af et optisk mikroskop og pladevækstassay til vurdering af fagocytose og drab af svampekonidier. Denne protokol vil give læserne trinvise instruktioner til udførelse af fagocytose og clearance assay ved hjælp af humane perifere blod mononukleare-afledte makrofager udsat for T. stromaticum. PBMC’er blev brugt, fordi Trichoderma conidia anvendes som biokontrol mod phytopathogener og en biogødning til planteafgrøder over hele verden og har forårsaget flere humane infektioner, kaldet Trichodermosis. Derudover er der kun to tidligere værker, der fokuserer på interaktionen mellem Trichoderma conidia og det menneskelige immunsystem, hvor vi undersøgte neutrofiler28 og autofagi i makrofager29. Denne artikel viser først, hvordan fagocytosen af konidierne af T. stromaticum ved PBMC-afledte makrofager kan studeres, og derefter hvordan levedygtigheden af de opslugte konidier kan vurderes ved hjælp af enkle mikroskopibaserede teknikker. Denne protokol kan yderligere lette undersøgelser af makrofagassocieret immunrespons eller immunsystemmodulationsrelaterede mekanismer.

Protocol

Etiske overvejelser og menneskelige emnerAlle eksperimenter med mennesker beskrevet i denne undersøgelse blev udført i henhold til erklæringen fra Helsinki og brasilianske føderale love og godkendt af State University of Santa Cruz’s etiske komité (projektidentifikationskode: 550.382 / 2014). Humant perifert blod blev indsamlet fra raske frivillige fra Ilhéus by, Bahia, Brasilien, der ikke blev udsat for erhvervsmæssige aktiviteter relateret til den undersøgte svam…

Representative Results

Teknikken, der involverer fagocytose af svampekonidier ved makrofager, anvendes i vid udstrækning til undersøgelser, der evaluerer moduleringen af immunresponserne mod svampe. Vi brugte fagocytosen af T. stromaticum conidia til at vurdere levedygtigheden af konidierne efter fagocytose, da unddragelse af fagocytose og flugt af fagosomer er mekanismer for svampevirulens. Forskere bør udføre disse teknikker som et af de første assays, når de undersøger en art af klinisk interesse. <p class="jove_content …

Discussion

For flere svampepatogener, herunder Aspergillus fumigatus, Cryptococcus, Candida albicans og andre, er conidial eller gærfagocytose en nøgleproces, der muliggør undersøgelse af de cytoplasmatiske og molekylære begivenheder i makrofagpatogeninteraktioner såvel som til bestemmelse af dødstidspunktet for de internaliserede konidier 14,39,40. Phagocytose er nøgleprocessen i Trichoderma-værtsin…

Declarações

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af følgende brasilianske finansieringsinstitutioner: Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) med tilskud RED0011/2012 og RED008/2014. U.R.S., J.O.C. og M.E.S.M. anerkender stipendiet fra henholdsvis Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) og FAPESB.

Materials

15 mL centrifuge tubes Corning CLS431470 15 mL centrifuge tubes, polypropylene, conical bottom with lid, individually sterile
24-Well Flat Bottom Cell Culture Plate Kasvi K12-024 Made of polystyrene with alphanumeric identification; The Cell Culture Plate is DNase, RNase and pyrogen-free and free of cytotoxic substances; Sterilized by gamma radiation;
Cell culture CO2 incubator Sanyo 303082 A CO2 incubator serves to create and control conditions similar to a human body, thus allowing the in vitro growth and proliferation of different cell types.
Centrifuge Microtube (eppendorf type) 1.5 mL Capp 5101500 Made from polypropylene, with a cap attached to the tube for opening and closing with just one hand. It has a polished interior against protein adhesion and for sample visibility, being free of DNase, RNase and Pyrogens
Circular coverslip 15 mm Olen K5-0015 Circular coverslips are used for microscopy techniques in cell culture. Made of super transparent translucent glass; with thickness of 0.13 mm
Class II Type B2 (Total Exhaust) Biosafety Cabinets Esco Lifesciences group 2010274 Airstream Class II Type B2 Biosafety Cabinets (AB2) provide product, operator and environmental protection and are suitable for work with trace amounts of toxic chemicals and agents assigned to biological safety levels I, II or III. In a Class II Type B2 cabinet, all inflow and downflow air is exhausted after HEPA/ULPA filtration to the external environment without recirculation across the work surface.
Dextrose Potato Agar medium Merck 145 Potato Dextrose Agar is used in the cultivation and enumeration of yeasts and fungi
EDTA vacuum blood collection tube FirstLab FL5-1109L EDTA is the recommended anticoagulant for hematology routines as it is the best anticoagulant for preserving cell morphology.
Entellan Merck 1.07961  Fixative agent; Entellan is a waterless mounting medium for permanent mounting for microscopy.
Fetal Bovine Serum Gibco A2720801 Fetal bovine serum (FBS) is a universal growth supplement of cell and tissue culture media. FBS is a natural cocktail of most of the factors required for cell attachment, growth, and proliferation, effective for most types of human and animal (including insect) cells.
Flaticon  database of images
Glycerol Merck 24900988 The cryoprotectant agent glycerol is used for freezing cells and spores
Histopaque-1077 polysucrose solution
Image J  Image analysis software
Microscopy slides Precision 7105 Slide for Microscopy 26 x 76 mm Matte Lapped Thickness 1.0 to 1.2 mm. Made of special optical glass and packaged with silk paper divider with high quality transparency free of imperfections
Mini centrifuge Prism C1801 The Prism Mini Centrifuge was designed to be extremely compact with an exceptionally small footprint. Includes 2 interchangeable quick-release rotors that spin up to 6000 rpm. An electronic brake provides quick deceleration and the self-opening lid allows easy access to the sample, reducing handling time.
Neubauer chamber Kasvi K5-0011 The Neubauer Counting Chamber is used for counting cells or other suspended particles.
Panoptic fast  Laborclin 620529 Laborclin's  panoptic fast c is a kit for quick staining in hematology
Penicillin/Streptomycin Solution – 10,000U LGC- Biotechnology  BR3011001 antibiotic is used in order to avoid possible contamination by manipulation external to the laminar flow.
Petri dish 90 x 15 mm Smooth Cralplast 18248 Disposable Petri dish; Made of highly transparent polystyrene (PS); flat bottom; Smooth;Size: 90 x 15 mm.
Phosphate buffered saline (PBS) thermo fisher Scientific 10010001 PBS is a water-based saline solution with a simple formulation. It is isotonic and non-toxic to most cells. It includes sodium chloride and phosphate buffer and is formulated to prevent osmotic shock while maintaining the water balance of living cells.
Pipette Pasteur 3 mL Sterile Accumax AP-3-B-S STERILE ACCUMAX PASTEUR 3 ML PIPETTE with 3 mL capacity, made of transparent low-density polyethylene (LDPE) and individually sterile
Refrigerated Centrifuge Thermo Scientific TS-HM16R The Thermo Scientific Heraeus Megafuge 16R Refrigerated Centrifuge is a refrigerated centrifuge with the user-friendly control panel makes it easy to pre-set the speed, RCF value, running time, temperature, and running profile. The Megafuge 16R can reach maximum speeds of 15,200 RPM and maximum RCF of 25,830 x g.
RPMI-1640 Medium Merck MFCD00217820 HEPES Modification, with L-glutamine and 25 mM HEPES, without sodium bicarbonate, powder, suitable for cell culture
The single channel micropipettes Eppendorf Z683809 Single-channel micropipettes are used to accurately transfer and measure very small amounts of liquids.
Tip for Micropipettor Corning 4894 Capacity of 10 µL and 1,000 µL Autoclavable
Triocular inverted microscope LABOMED VU-7125500 It allows you to observe cells inside tubes and bottles, without having to open them, thus avoiding contamination problems.

Referências

  1. Samuels, G. J. Trichoderma: A review of biology and systematics of the genus. Mycological Research. 100 (8), 923-935 (1996).
  2. Nevalainen, H., Peterson, R., Gupta, V. K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., Tuohy, M. G. Chapter 7 – Heterologous expression of proteins in Trichoderma. Biotechnology and Biology of Trichoderma. , (2014).
  3. Do Vale, L. H. F., Filho, E. X. F., Miller, R. N. G., Ricart, C. A. O., de Sousa, M. V., Gupta, V. K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., Tuohy, M. G. Chapter 16 – Cellulase systems in Trichoderma: An overview. Biotechnology and Biology of Trichoderma. , (2014).
  4. Ferreira, N. L., Margeot, A., Blanquet, S., Berrin, J. G., Gupta, V. K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., Tuohy, M. G. Chapter 17 – Use of cellulases from Trichoderma reesei in the twenty-first century part I: Current industrial uses and future applications in the production of second ethanol generation. Biotechnology and Biology of Trichoderma. , (2014).
  5. Puranen, T., Alapuranen, M., Vehmaanperä, J., Gupta, V. K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., Tuohy, M. G. Chapter 26 – Trichoderma enzymes for textile industries. Biotechnology and Biology of Trichoderma. , (2014).
  6. Kunamneni, A., Plou, F. J., Alcalde, M., Ballesteros, A., Gupta, V. K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., Tuohy, M. G. Chapter 24 – Trichoderma enzymes for food industries. Biotechnology and Biology of Trichoderma. , (2014).
  7. Mukherjee, P. K., Horwitz, B. A., Herrera-Estrella, A., Schmoll, M., Kenerley, C. M. Trichoderma research in the genome era. Annual Review of Phytopathology. 51 (1), 105-129 (2013).
  8. Mukherjee, M., et al. Trichoderma-plant-pathogen interactions: Advances in genetics of biological control. Indian Journal of Microbiology. 52 (4), 522-529 (2012).
  9. dos Santos, U. R., dos Santos, J. L. Trichoderma after crossing kingdoms: Infections in human populations. Journal of Toxicology and Environmental Health, Part B. 26 (2), 97-126 (2023).
  10. Asis, A., et al. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Molecular Biology Reports. 48 (4), 3285-3301 (2021).
  11. Antal, Z., et al. Comparative study of potential virulence factors in human pathogenic and saprophytic Trichoderma longibrachiatum strains. Acta Microbiologica et Immunologica Hungarica. 52 (3-4), 341-350 (2005).
  12. Hatvani, L., Manczinger, L., Vágvölgyi, C., Kredics, L., Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., Schmoll, M. Trichoderma as a human pathogen. Trichoderma: Biology and Applications. , (2013).
  13. Kredics, L., et al. Clinical importance of the genus Trichoderma: A review. Acta Microbiologica et Immunologica Hungarica. 50 (2-3), 105-117 (2003).
  14. Erwig, L. P., Gow, N. A. R. Interactions of fungal pathogens with phagocytes. Nature Reviews Microbiology. 14 (3), 163-176 (2016).
  15. Nicola, A. M., Casadevall, A. In vitro measurement of phagocytosis and killing of Cryptococcus neoformans by macrophages. Methods in Molecular Biology. 844, 189-197 (2012).
  16. Medina, E., Goldmann, O. In vivo and ex vivo protocols for measuring the killing of extracellular pathogens by macrophages. Current Protocols in Immunology. , 1-17 (2011).
  17. Drevets, D. A., Canono, B. P., Campbell, P. A. Measurement of bacterial ingestion and killing by macrophages. Current Protocols in Immunology. 109, 1-17 (2015).
  18. Gresnigt, M. S., et al. Differential kinetics of Aspergillus nidulans and Aspergillus fumigatus phagocytosis. Journal of Innate Immunity. 10 (2), 145-160 (2018).
  19. Steinberg, B. E., Grinstein, S. Analysis of macrophage phagocytosis: Quantitative assays of phagosome formation and maturation using high-throughput fluorescence microscopy. Methods in Molecular Biology. 531, 45-56 (2009).
  20. Yan, Q., Ahn, S. H., Fowler, V. G. Macrophage phagocytosis assay of Staphylococcus aureus by flow cytometry. Bio-Protocol. 5 (4), 1406 (2015).
  21. Marr, K. A., Koudadoust, M., Black, M. Early events in macrophage killing of Aspergillus fumigatus conidia New flow cytometric viability assay. Clinical and Diagnostic Laboratory Immunology. 8 (6), 1240-1247 (2001).
  22. Surewaard, B. G. J., Kubes, P. Measurement of bacterial capture and phagosome maturation of Kupffer cells by intravital microscopy. Methods. 128, 12-19 (2017).
  23. Siggins, M. K., et al. Differential timing of antibody-mediated phagocytosis and cell-free killing of invasive African Salmonella allows immune evasion. European Journal of Immunology. 44 (4), 1093-1098 (2014).
  24. Cannon, G. J., Swanson, J. A. The macrophage capacity for phagocytosis. Journal of Cell Science. 101 (4), 907-913 (1992).
  25. Harvath, L., Terle, D. A. Assay for phagocytosis. Methods in Molecular Biology. 115, 281-290 (1999).
  26. dos Santos, A. G., et al. Trichoderma asperelloides spores downregulate dectin1/2 and TLR2 receptors of mice macrophages and decrease Candida parapsilosis phagocytosis independent of the M1/M2 polarization. Frontiers in Microbiology. 8, 1681 (2017).
  27. Souza, J. A. M., et al. Characterization of Aspergillus fumigatus extracellular vesicles and their effects on macrophages and neutrophils functions. Frontiers in Microbiology. 10, 2008 (2019).
  28. Oliveira-Mendonça, L. S., et al. Inhibition of extracellular traps by spores of Trichoderma stromaticum on neutrophils obtained from human peripheral blood. Molecular Immunology. 141, 43-52 (2022).
  29. Oliveira-Mendonça, L. S., et al. Trichoderma stromaticum spores induce autophagy and downregulate inflammatory mediators in human peripheral blood-derived macrophages. Current Research in Microbial Sciences. 3, 100145 (2022).
  30. Johnston, L., Harding, S. A., La Flamme, A. C. Comparing methods for ex vivo characterization of human monocyte phenotypes and in vitro responses. Immunobiology. 220 (12), 1305-1310 (2015).
  31. Abedon, S. T., Bartom, E., Maloy, S., Hughes, K. Multiplicity of infection. Brenner’s Encyclopedia of Genetics. Second Edition. , (2013).
  32. Rios, F. J., Touyz, R. M., Montezano, A. C. Isolation and differentiation of human macrophages. Methods in Molecular Biology. 1527, 311-320 (2017).
  33. Lombard, Y., Giaimis, J., Makaya-Kumba, M., Fonteneau, P., Poindron, P. A new method for studying the binding and ingestion of zymosan particles by macrophages. Journal of Immunological Methods. 174 (1-2), 155-165 (1994).
  34. Ghoneum, M., Gollapudi, S. Phagocytosis of Candida albicans by metastatic and non metastatic human breast cancer cell lines in vitro. Cancer Detection and Prevention. 28 (1), 17-26 (2004).
  35. Nunes, J. P. S., Dias, A. A. M. ImageJ macros for the user-friendly analysis of soft-agar and wound-healing assays. BioTechniques. 62 (4), 175-179 (2017).
  36. Alves-Filho, E. R., et al. The biocontrol fungus Trichoderma stromaticum downregulates respiratory burst and nitric oxide in phagocytes and IFN-gamma and IL-10. Journal of Toxicology and Environmental Health – Part A: Current Issues. 74 (14), 943-958 (2011).
  37. Slesiona, S., et al. Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS One. 7 (2), 31223 (2012).
  38. Johnston, S. A., May, R. C. Cryptococcus interactions with macrophages: Evasion and manipulation of the phagosome by a fungal pathogen. Cellular Microbiology. 15 (3), 403-411 (2013).
  39. Alonso, M. F., et al. The nature of the fungal cargo induces significantly different temporal programmes of macrophage phagocytosis. The Cell Surface. 8, 100082 (2022).
  40. Brakhage, A. A., Bruns, S., Thywissen, A., Zipfel, P. F., Behnsen, J. Interaction of phagocytes with filamentous fungi. Current Opinion in Microbiology. 13 (4), 409-415 (2010).
  41. Dos Santos, U. R., et al. Exposition to biological control agent Trichoderma stromaticum increases the development of cancer in mice injected with murine melanoma. Frontiers in Cellular and Infection Microbiology. 10, 252 (2020).
  42. Wang, G., et al. Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation. Carbohydrate Polymers. 149, 112-120 (2016).
  43. Xu, Y., et al. Exopolysaccharide from Trichoderma pseudokoningii promotes maturation of murine dendritic cells. International Journal of Biological Macromolecules. 92, 1155-1161 (2016).
  44. Schmoll, M., Esquivel-Naranjo, E. U., Herrera-Estrella, A. Trichoderma in the light of day – Physiology and development. Fungal Genetics and Biology. 47 (11), 909-916 (2010).
  45. Zhang, G., Li, D. Trichoderma longibrachiatum-associated skin inflammation and atypical hyperplasia in mouse. Frontiers in Medicine. 9, 865722 (2022).
  46. Paredes, K., Capilla, J., Mayayo, E., Guarro, J. Virulence and experimental treatment of Trichoderma longibrachiatum, a fungus refractory to treatment. Antimicrobial Agents and Chemotherapy. 60 (8), 5029-5032 (2016).
  47. Perkhofer, S., Speth, C., Dierich, M. P., Lass-Flörl, C. In vitro determination of phagocytosis and intracellular killing of Aspergillus species by mononuclear phagocytes. Mycopathologia. 163 (6), 303-307 (2007).
check_url/pt/65231?article_type=t

Play Video

Citar este artigo
dos Santos, U. R., de Castro, J. O., Santos Matos, M. E., De Bonis, G., dos Santos, J. L. Viability Assay of Trichoderma stromaticum Conidia Inside Human Peripheral Blood Mononuclear-Derived Macrophages. J. Vis. Exp. (200), e65231, doi:10.3791/65231 (2023).

View Video