Summary

マウスにおける人工関節周囲カン ジダ・アルビカンス 感染モデル

Published: February 02, 2024
doi:

Summary

危険な病原体によって引き起こされる人工関節周囲感染症(PJI)は、臨床整形外科で一般的です。既存の動物モデルでは、PJIの実態を正確に再現することはできません。本研究では、 カンジダ・アルビカンス バイオフィルム関連PJIマウスモデルを確立し、PJIの新規治療薬の研究開発を行なう。

Abstract

人工関節周囲感染症(PJI)は、 カンジダ・アルビカンス(C.アルビカンス)によって引き起こされる一般的な感染症の1つであり外科医や科学者の懸念が高まっています。一般に、 C.アルビカンス を抗生物質や免疫クリアランスから保護できるバイオフィルムが感染部位に形成されます。感染したインプラントの除去、創面切除、抗菌治療、および再移植を含む手術は、PJI治療のゴールドスタンダードです。このように、動物PJIモデルを確立することは、PJIの新薬や治療薬の研究開発にとって大きな意義があります。この研究では、整形外科クリニックで広く使用されているインプラントである滑らかなニッケルチタン合金ワイヤーをC57BL/6マウスの大腿関節に挿入し、C .アルビカンス をワイヤーに沿って関節腔に接種しました。14日後、走査型電子顕微鏡(SEM)下でインプラントの表面に成熟した厚いバイオフィルムが観察されました。骨梁の有意な減少は、感染した関節標本のH&E染色で発見された。要約すると、操作が簡単で、成功率が高く、再現性が高く、臨床的相関が高いという利点を備えたマウスPJIモデルが確立されました。本研究は、 C. albicans のバイオフィルム関連PJI予防の臨床研究における重要なモデルとなることが期待されます。

Introduction

カンジダ・アルビカンス(C. albicans)は、人体の多くの部分に共生しており1、特に免疫不全の患者において、生命を脅かす侵襲性真菌感染症を引き起こす最も一般的な日和見病原体でもあります2,3C.アルビカンスは、酵母と菌糸体の状態の間で多形性真菌として形質転換することができます。菌糸体の状態は、より高い病原性、より強い接着、および細胞や組織への浸潤を示します4,5。さらに、C.アルビカンスは、義歯、カテーテル、ステントなどの生物医学材料の表面にバイオフィルムを形成する可能性があります1,6,7バイオフィルムの緻密な三次元構造は、抗真菌薬の浸潤を制限し、薬剤耐性遺伝子を発現し、真菌細胞の代謝をダウンレギュレートして免疫系のクリアランスに抵抗する6,7。したがって、バイオフィルム関連の感染症は、診療所で非常に困難です8。

黄色ブドウ球菌、コアグラーゼ陰性ブドウ球菌、およびエンテロバクターは、PJI9を引き起こす主な病原体です。真菌PJIの発生率は比較的低い(約1%)が10が、真菌PJIの治療費は高く11、治療サイクルは長く11、治療成功率は細菌PJIよりも低い10。近年、真菌性PJIの発生率は年々増加しています10。カンジダPJIは真菌PJIの77%〜84%を占め、10,12C.アルビカンスはカンジダで最も一般的です(54%)。したがって、真菌PJIを研究する必要があります。

現在、PJIは、(1)感染したインプラントの除去、(2)創面切除、(3)抗菌治療、(4)再移植による再移植手術による治療を行っています。徹底的な創面切除の後、骨セメントを含む抗生物質が配置され、患者は抗生物質で6週間以上全身的に治療され、感染を効果的に制御してから、新しいインプラントが配置されます13。しかし、この方法では組織内の病原体を完全に排除することはできず、長期の抗菌薬療法で治療された再発性感染症は、薬剤耐性株で発症する可能性が高くなります14,15,16。

PJIの動物モデルを確立することは、PJIの新薬や治療薬の研究開発にとって重要です。PJIの発症では、プロテーゼの周囲に大きなデッドスペースが形成され、血腫の形成につながり、周囲の組織の血液供給をさらにブロックし、抗生物質の効果を損ないます11,15。プロテーゼの周囲環境を模倣することが困難なため、従来の動物モデルではPJI17,18の実際の状況を正確にシミュレートすることはできません。

この論文では、マウスのC.アルビカンスバイオフィルム関連PJIモデルが、臨床的に広く使用されているチタンニッケルワイヤーを使用して構築され、関節インプラントをシミュレートしました19,20。このPJIモデルは、操作が簡単で、成功率が高く、再現性が高く、臨床的相関が高いという利点があります。本研究は、C. albicansバイオフィルム関連PJIの予防と治療を研究するための重要なモデルとなることが期待されます。

Protocol

動物は西安交通大学から購入しました。すべての動物実験手順は、西安交通大学の動物倫理委員会によって承認されました(承認番号:SCXK[陝西]2021-103)。マウスを1ケージあたり5匹で1週間飼育した。彼らは食料と水を自由に手に入れることを許された。動物は、研究が実施される前に、室温(RT;24°C±1°C)および明暗サイクル(12時間/12時間)に維持されました。 1. バッファ?…

Representative Results

サンプルをプレート培地に移し、一晩のインキュベーション後にコロニーをカウントすることは、病変付近の局所病原体負荷を評価するために一般的に使用されます22,23。私たちの研究では、肝臓、腎臓、および脾臓サンプルの微生物培養は陰性であり、この研究のモデルはマウスの全身感染ではなく局所感染のみを引き起こしたことを示していま…

Discussion

手術器具の汚染や手術中の手術環境によって引き起こされる感染症は、ほとんどのインプラント感染症の主な理由です24,25,26,27そこで、本研究ではマウスC.アルビカンスバイオフィルム関連PJIモデルを構築した。生理食塩水に懸濁した無菌ステンレス粒子をインプラントとする従来のPJIモ…

Declarações

The authors have nothing to disclose.

Acknowledgements

陝西省自然科学基金会(助成金番号2021SF-118)および中国国家自然科学基金会(助成金番号81973409、82204631)からの財政的支援に感謝します。

Materials

0.5 Mactutrius turbidibris Shanghai Lujing Technology Co., Ltd 5106063
4 °C refrigerator Electrolux (China) Electric Co., Ltd ESE6539TA
Agar Beijing Aoboxing Bio-tech Co., Ltd 01-023
Analytical balances Shimadzu ATX124
Autoclaves Sterilizer SANYO MLS-3750
Carbenicillin Amresco C0885
Eclipse Ci Nikon upright optical microscope  Nikon Eclipse Ts2-FL
Glucose Macklin  D823520
Inoculation ring Thermo Scientific 251586
Isoflurane RWD 20210103
NaCl Xi'an Jingxi Shuanghe Pharmaceutical Co., Ltd 20180108
Paraformaldehyde Beyotime Biotechnology P0099
Peptone Beijing Aoboxing Bio-tech Co., Ltd 01-001
RWD R550 multi-channel small animal anesthesia machine  RWD R550
SEM Hitachi TM-1000
Temperature incubator Shanghai Zhichu Instrument Co., Ltd ZQTY-50N
Ultrapure water water generator Heal Force NW20VF
Ultrasound machine Do-Chrom DS10260D
Yeast extract Thermo Scientific Oxoid LP0021B

Referências

  1. Mayer, F. L., Wilson, D., Hube, B. Candida albicans pathogenicity mechanisms. Virulence. 4 (2), 119-128 (2013).
  2. Fan, F., et al. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. International Journal of Antimicrobial Agents. 60 (5-6), 106673 (2022).
  3. Tong, Y., Tang, J. Candida albicans infection and intestinal immunity. Microbiological Research. 198, 27-35 (2017).
  4. Kanaguchi, N., et al. Effects of salivary protein flow and indigenous microorganisms on initial colonization of Candida albicans in an in vivo model. Bmc Oral Health. 12, 36 (2012).
  5. Gulati, M., Nobile, C. J. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes and Infection. 18 (5), 310-321 (2016).
  6. Douglas, L. J. Candida biofilms and their role in infection. Trends in Microbiology. 11 (1), 30-36 (2003).
  7. Nobile, C. J., Johnson, A. D. Candida albicans biofilms and human disease. Annual Review of Microbiology. 69, 71-92 (2015).
  8. Mack, D., et al. Biofilm formation in medical device-related infection. The International Journal of Artificial Organs. 29 (4), 343-359 (2006).
  9. Miller, R., et al. Periprosthetic joint infection: A review of antibiotic treatment. JBJS Reviews. 8 (7), e1900224 (2020).
  10. Brown, T. S., et al. Periprosthetic joint infection with fungal pathogens. The Journal of Arthroplasty. 33 (8), 2605-2612 (2018).
  11. Kojic, E. M., Darouiche, R. O. Candida infections of medical devices. Clinical Microbiology Reviews. 17 (2), 255-267 (2004).
  12. Schoof, B., et al. Fungal periprosthetic joint infection of the hip: a systematic review. Orthopedic Reviews (Pavia). 7 (1), 5748 (2015).
  13. Izakovicova, P., Borens, O., Trampuz, A. Periprosthetic joint infection: current concepts and outlook. EFORT Open Reviews. 4 (7), 482-494 (2019).
  14. Tande, A. J., Patel, R. Prosthetic joint infection. Clinical Microbiology Reviews. 27 (2), 302-345 (2014).
  15. Stocks, G., Janssen, H. F. Infection in patients after implantation of an orthopedic device. ASAIO Journal. 46 (6), S41-S46 (2000).
  16. Shahi, A., Tan, T. L., Chen, A. F., Maltenfort, M. G., Parvizi, J. In-hospital mortality in patients with periprosthetic joint infection. The Journal of Arthroplasty. 32 (3), 948-952 (2017).
  17. Carli, A. V., Ross, F. P., Bhimani, S. J., Nodzo, S. R., Bostrom, M. P. Developing a clinically representative model of periprosthetic joint infection. The Journal of Bone and Joint Surgery. American Volume. 98 (19), 1666-1676 (2016).
  18. Stavrakis, A. I., Niska, J. A., Loftin, A. H., Billi, F., Bernthal, N. M. Understanding infection: A primer on animal models of periprosthetic joint infection. The Scientific World Journal. 2013, 925906 (2013).
  19. Qiao, B., Lv, T. Electrochemical investigation of interaction of candida albicans with titanium-nickel implant in human saliva. International Journal of Electrochemical Science. 17 (2), 22028 (2022).
  20. Oh, Y. R., Ku, H. M., Kim, D., Shin, S. J., Jung, I. Y. Efficacy of a Nickel-titanium ultrasonic instrument for biofilm removal in a simulated complex root canal. Materials. 13 (21), 4914 (2020).
  21. Feldman, A. T., Wolfe, D., Christina E, D. a. y. Tissue Processing and Hematoxylin and Eosin Staining. Histopathology: Methods and Protocols. , 31-43 (2014).
  22. Sinclair, K. D., et al. Model development for determining the efficacy of a combination coating for the prevention of perioperative device related infections: A pilot study. Journal of Biomedical Materials Research – Part B Applied Biomaterials. 101 (7), 1143-1153 (2013).
  23. Mo, F., et al. In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms. Phytomedicine. 71, 153223 (2020).
  24. Zahar, A., Sarungi, M. Diagnosis and management of the infected total knee replacement: a practical surgical guide. Journal of Experimental Orthopaedics. 8 (1), 14 (2021).
  25. Parvizi, J., Jacovides, C., Zmistowski, B., Jung, K. A. Definition of periprosthetic joint infection: Is there a consensus. Clinical Orthopaedics and Related Research. 469 (11), 3022-3030 (2011).
  26. Karczewski, D., et al. Candida periprosthetic joint infections – risk factors and outcome between albicans and non-albicans strains. International Orthopaedics. 46 (3), 449-456 (2022).
  27. Cobo, F., Rodriguez-Granger, J., Sampedro, A., Aliaga-Martinez, L., Navarro-Mari, J. M. Candida prosthetic joint infection. A review of treatment methods. Journal of Bone and Joint Infection. 2 (2), 114-121 (2017).
  28. Cobrado, L., Silva-Dias, A., Azevedo, M. M., Pina-Vaz, C., Rodrigues, A. G. In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. Journal of Antimicrobial Chemotherapy. 68 (1), 126-130 (2013).
  29. Vila, T., et al. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence. 12 (1), 835-851 (2021).
  30. Nishitani, K., et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. Journal of Orthopaedic Research. 33 (9), 1311-1319 (2015).
  31. Ormsby, R. T., et al. Evidence for osteocyte-media ted bone-matrix degradation associated with periprosthetic joint infection (PJI). European Cells & Materials. 42, 264-280 (2021).
  32. Garlito-Díaz, H., et al. A new antifungal-loaded sol-gel can prevent candida albicans prosthetic joint infection. Antibiotics (Basel). 10 (6), 711 (2021).
  33. Harro, J. M., et al. Development of a novel and rapid antibody-based diagnostic for chronic staphylococcus aureus infections based on biofilm antigens. Journal of Clinical Microbiology. 58 (5), e01414-e01419 (2020).
check_url/pt/65263?article_type=t

Play Video

Citar este artigo
Yang, C., Zhang, J., Mo, F., Zhang, P., Li, Q., Zhang, J. A Periprosthetic Joint Candida albicans Infection Model in Mouse. J. Vis. Exp. (204), e65263, doi:10.3791/65263 (2024).

View Video