Summary

从活大鼠中分离神经干细胞和少突胶质细胞祖细胞的“脑挤奶”方法

Published: February 09, 2024
doi:

Summary

本文详细介绍了从活大鼠大脑中分离神经干细胞和少突胶质细胞祖细胞的方法。它允许从同一只动物身上多次收集这些细胞,而不会影响它们的健康。

Abstract

组织特异性神经干细胞 (NSC) 在哺乳动物出生后大脑中保持活跃。它们居住在专门的生态位中,在那里它们产生新的神经元和神经胶质细胞。其中一个生态位是室管膜下区(SEZ;也称为室室-脑室下区),它位于侧脑室的侧壁上,与室管膜细胞层相邻。少突胶质细胞祖细胞 (OPC) 大量分布在整个中枢神经系统中,构成可产生少突胶质细胞的增殖祖细胞库。

NSC 和 OPC 都表现出自我更新潜力和静止/激活周期。由于它们的位置,这些细胞的分离和实验研究是在死后进行的。在这里,我们详细描述了“脑挤奶”,这是一种从活体动物中分离 NSC 和 OPC 以及其他细胞的方法。这是一个设计用于啮齿动物并在大鼠中测试的两步方案。首先, 通过 立体定位脑室内 (i.c.v.) 注射“释放鸡尾酒”,将细胞从组织中“释放”。主要成分是神经氨酸酶,其靶向室管膜细胞并诱导室壁剥落、整合素-β1 阻断抗体和成纤维细胞生长因子-2。在第二个“收集”步骤中,从麻醉的大鼠池中进行脑脊液的液体活检,而无需切口。

这里给出的结果表明,分离的细胞保留了其内源性特征,而经济特区的NSC保持了它们的静止状态。室管膜层的剥蚀仅限于注射的解剖水平,并且动物可以很好地耐受该方案(释放和收集)。这种新方法为在实验动物中进行内源性神经发生和胶质生成的纵向研究铺平了道路。

Introduction

组织特异性干细胞是部分承诺的细胞,可以产生构成各自组织的所有细胞群。除了多能外,它们还是自我更新的细胞,对于维持组织的稳态和再生能力至关重要1.一些组织特异性干细胞保持活跃、强烈增殖状态,例如肠道或造血干细胞。其他细胞,如脑干细胞,在很大程度上保持静止或休眠状态2.在成人大脑中,神经干细胞 (NSC) 可以在特定区域找到,通常称为生态位。在侧脑室的室管膜下区 (SEZ) 和海马的齿状回中存在两个这样的描述良好的区域。经济特区生态位产生的细胞数量最多,主要是向嗅球迁移并有助于局部中间神经元群的神经母细胞;相反,产生的少突胶质细胞迁移到相邻的胼胝体 (CC)3。少突胶质细胞祖细胞 (OPC) 是有丝分裂活性细胞,广泛分布在整个中枢神经系统中,它们:i) 致力于少突胶质细胞谱系,ii) 可以迁移到脱髓鞘位点,以及 iii) 可以分化成髓鞘少突胶质细胞。OPC 还表现出自我更新潜力和静止状态4

到目前为止,NSC和OPC的分离和研究需要对解剖的大脑和脊髓组织进行死后解离。为了规避这一实验限制,我们建立了一种方法,首次允许从活体动物中分离大脑NSC和OPC。我们称这种方法为“挤奶”,因为它可以收集多个细胞,因为它们的池不会耗尽。该协议是在大鼠中开发的,因为它们的大脑体积很大,主要针对经济特区或CC,包括两个主要步骤。首先, 通过 静脉注射含有神经氨酸酶(一种诱导脑室壁剥落的毒素、一种整合素-β1 阻断抗体和成纤维细胞生长因子 2 (FGF2)的“释放鸡尾酒”,将 NSC 或 OPC 从组织中“去除”。鸡尾酒在侧脑室内双侧立体注射。如果预期用途是分离 NSC,则以侧脑室的喙部区域为目标。如果目的是更纯净地分离OPC,则将混合物从尾部注射到海马菌毛区域。在第二个“收集”步骤中,从麻醉大鼠的脑池中进行脑脊液(CSF)的液体活检,而无需切口。将液体活检与NSC培养基混合,并可保持在4°C直至接种。

Protocol

动物育种、维护和实验程序是根据内政部授权的《1986年英国动物(科学程序)法》和希腊共和国第56/2013号总统令进行的,由剑桥大学和帕特雷大学的动物福利和伦理审查机构审查,并由当地县动物护理和使用委员会批准和审查(协议编号: 5675/39/18-01-2021)。 使用雄性和雌性 Sprague-Dawley、Wistar 和 Long-Evans 大鼠,年龄在 2 至 4 个月之间,体重在 150 g 至 250 g 之间。该协议以图形方式总结在 <strong cla…

Representative Results

NSC的发布和收集经济特区的 NSC 仅通过室管膜细胞的单层与脑脊液分离,尽管它们通过插入的单纤毛突与心室内容物保持直接接触 8,9。神经氨酸酶通过裂解唾液酸残基特异性作用于室管膜细胞,并可诱导心室壁脱落。这导致神经母细胞聚集在心室表面 10,11。此外,在静脉注射整合…

Discussion

干细胞和祖细胞在哺乳动物脑组织中相对稀疏。此外,NSC 位于难以进入且易于安全活检的区域(心室壁、海马体)。因此,到目前为止,对这种细胞进行实验的唯一方法是它们的死后分离。这里逐步描述了一种允许从活大鼠中单次或重复收集NSC和OPC的方法,称为挤奶。该方法基于两个关键特征:i) NSC 或 OPC 由室管膜细胞单层与脑脊液分离,在脑室系统内流动;ii) 室管膜细胞和神经祖细胞通过整…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 R.J.M.F. 和 I.K. 的 Action Medical Research(英国)资助 (GN2291) 的支持。该研究工作也得到了希腊研究与创新基金会(H.F.R.I.)的部分支持(动物成本和对D.D的支持),在“首次呼吁H.F.R.I.研究项目以支持教职员工和研究人员以及采购高成本研究设备赠款”(项目编号:3395)。

Materials

Release cocktail
β1-integrin-blocking antibody BD Biosciences #555002 purified NA/LE Hamster Anti-Rat CD29 Clone Ha2/5, 1 mg/mL. Any abntibody with blocking activity should be appropriate.
Neuraminidase from Clostridium perfringens (Clostridium welchii) Sigma-Aldrich #N2876 Neuraminidases fromother sources (e.g., from Vibrio cholerae) have not been tested.
Recombinant Human FGF-basic (154 a.a.) Peprotech #100-18B kept as a 1 μg/μL stock, diluted in sterile water at -20 °C
Surgical procedures
10 µL Syringe Hamilton #80330 Model 701 RN, Small Removable Needle, 26s gauge, 2 in., point style 2
BD Micro-fine 1 mL insulin syringes BD biosciences 04085-00 29 G x 12.7 mm
BETADINE CUT.SOL 10% FLx30ML LAVIPHARM-CASTALIA SKU: 5201048131168
Bupaq RICHTERPHARMA 1021854AF 10 mL (buprenophine 0.3 mg/mL)
Digital New Standard Stereotaxic, Rat and Mouse Stoelting 51500D
Homeothermic Monitoring System Harvard Apparatus 55-7020
ISOFLURIN 1,000 mg/g inhalation vapour, liquid Vetpharma Animal Health 32509/4031
Ketamidor RICHTER PHARMA SKU: 9004114002531 Ketamine 100 mg/mL
Nylon suture, Ethilon Ethicon D9635 Clear , size 5-0
Rechargeable Cordless Surgical Trimmers Stoelting Item:51472
Scalpel blades, sterile Swann Morton AW050
Scopettes Jr.  8-inch Swabs Birchwood Laboratories 34-7021-12P
Stereotaxic High Speed Drill Foredom 1474w/o1464
Stoelting’s Stereotaxic Instrument Kit Stoelting Item: 52189
Xylan 2% Chanelle Pharmaceuticals 13764/03/19-5-2004 Xylazine, 25 mL
Tissue and cells handling and immunostainings
96-well plates appropriate for microscopy Greiner #655866 Screen star microplate
B27 supplement ThermoFisher Scientific A1486701
Bovine Serum Albumin (BSA) Merck P06-1391100 Fraction V, heat shock
Citrate Merck 71497 Sodium citrate monobasic
Cryostat Leica CM1510S
DAPI Merck, Calbiochem 28718-90-3 Nuclear staining, Dilution: 1/1,000
DMEM ThermoFisher Scientific 11995065 High glucose, pyruvate
donkey anti-goat Biotium 20016 or 20106 or 20048 Dilution: 1/1,000
donkey anti-mouse Biotium 20014 or 20105 or 20046 Dilution: 1/1,000
donkey anti-rabbit Biotium 20015 or 20098 or 20047 Dilution: 1/1,000
EGF Peprotech 315-09
FGF-2 (or bFGF) Peprotech 100-18B
goat anti-GFAP Abcam ab53554 Dilution: 1/500
goat anti-SOX2 Santa Cruz Biotecnology sc-17320 Dilution: 1/200
mouse anti-ID3 Santa Cruz Biotecnology sc-56712 Dilution: 1/200
mouse anti-S100β Sigma S2532 Dilution: 1/200
Mowiol Merck, Calbiochem 475904 Mounting medium
N2 supplement ThermoFisher Scientific 17502048
Parafolmadehyde Merck 158127
Poly-D-Lysine Merck, Millipore A-003-E Solution, 1.0 mg/mL
rabbit anti-Doublecortin (DCX) Abcam ab18723 Dilution: 1/500
rabbit anti-PDGFRα Abcam ab51875 Dilution: 1/200
rabbit anti-β- catenin Abcam ab16051 Dilution: 1/500
Triton X-100 Merck X100
Microscopy and image analysis
Confocal microscope Leica SP6 and SP8
Image analysis NIH, USA ImageJ
Image analysis Leica LasX

Referências

  1. Visvader, J. E., Clevers, H. Tissue-specific designs of stem cell hierarchies. Nature Cell Biology. 18 (4), 349-355 (2016).
  2. Dimitrakopoulos, D., Kakogiannis, D., Kazanis, I. Heterogeneity of quiescent and active neural stem cells in the postnatal brain. The International Journal of Developmental Biology. 66 (1-2-3), 51-58 (2022).
  3. Kazanis, I., et al. Subependymal zone-derived oligodendroblasts respond to focal demyelination but fail to generate myelin in young and aged mice. Stem Cell Reports. 8 (3), 685-700 (2017).
  4. Franklin, R. J. M., Ffrench-Constant, C. Regenerating CNS myelin-from mechanisms to experimental medicines. Nature Reviews. Neuroscience. 18 (12), 753-769 (2017).
  5. . The Rat Brain in Stereotaxic Coordinates. 7th Edition Available from: https://www.elsevier.com/books/the-rat-brain-in-stereotaxic-coordinates/paxinos/978-0-12-391949-6 (2013)
  6. Pegg, C. C., He, C., Stroink, A. R., Kattner, K. A., Wang, C. X. Technique for collection of cerebrospinal fluid from the cisterna magna in rat. Journal of Neuroscience Methods. 187 (1), 8-12 (2010).
  7. McClenahan, F., et al. Isolation of neural stem and oligodendrocyte progenitor cells from the brain of live rats. Stem Cell Reports. 16 (10), 2534-2547 (2021).
  8. Doetsch, F., García-Verdugo, J. M., Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proceedings of the National Academy of Sciences. 96 (20), 11619-11624 (1999).
  9. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. -. M., Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 36 (6), 1021-1034 (2002).
  10. Del Carmen Gómez-Roldán, M., et al. Neuroblast proliferation on the surface of the adult rat striatal wall after focal ependymal loss by intracerebroventricular injection of neuraminidase. The Journal of Comparative Neurology. 507 (4), 1571-1587 (2008).
  11. Luo, J., Shook, B. A., Daniels, S. B., Conover, J. C. Subventricular zone-mediated ependyma repair in the adult mammalian brain. The Journal of Neuroscience. 28 (14), 3804-3813 (2008).
  12. Kazanis, I., et al. Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. The Journal of Neuroscience. 30 (29), 9771-9781 (2010).
  13. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 3 (3), 265-278 (2008).
  14. Calzolari, F., et al. Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nature Neuroscience. 18 (4), 490-492 (2015).
  15. Douet, V., Kerever, A., Arikawa-Hirasawa, E., Mercier, F. Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Proliferation. 46 (2), 137-145 (2013).
  16. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255 (5052), 1707-1710 (1992).
  17. Obernier, K., et al. Adult neurogenesis is sustained by symmetric self-renewal and differentiation. Cell Stem Cell. 22 (2), 221-234 (2018).
  18. Delgado, A. C., et al. Release of stem cells from quiescence reveals gliogenic domains in the adult mouse brain. Science. 372 (6547), 1205-1209 (2021).
  19. Kalamakis, G., et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell. 176 (6), 1407-1419 (2019).
  20. Llorens-Bobadilla, E., et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 17 (3), 329-340 (2015).
  21. Gajera, C. R., et al. LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. Journal of Cell Science. 123 (11), 1922-1930 (2010).
check_url/pt/65308?article_type=t

Play Video

Citar este artigo
Dimitrakopoulos, D., Dimitriou, C., McClenahan, F., Franklin, R. J. M., Kazanis, I. The “Brain Milking” Method for the Isolation of Neural Stem Cells and Oligodendrocyte Progenitor Cells from Live Rats. J. Vis. Exp. (204), e65308, doi:10.3791/65308 (2024).

View Video