Summary

Murin Kalp Yetmezliği Modellerinde Kalp Hızına Bağlı Diyastolik Fonksiyonların Değerlendirilmesi için Pacing Kontrollü Bir Prosedür

Published: July 21, 2023
doi:

Summary

Mevcut protokol, kalp yetmezliğinin fare modellerinde diyastolik fonksiyonun değerlendirilmesinde değerli bir araç olarak hizmet eden transözofageal pacing yoluyla basınç-hacim ilişkisinin elde edilmesini açıklamaktadır.

Abstract

Korunmuş ejeksiyon fraksiyonu (HFpEF) ile kalp yetmezliği, diyastolik disfonksiyon ve egzersiz intoleransı ile karakterize bir durumdur. Diyastolik disfonksiyonu tespit etmek ve insanlarda HFpEF’i teşhis etmek için egzersiz stresli hemodinamik testler veya MRI kullanılabilirken, bu tür modaliteler fare modelleri kullanılarak yapılan temel araştırmalarda sınırlıdır. Farelerde bu amaç için yaygın olarak bir koşu bandı egzersiz testi kullanılır, ancak sonuçları vücut ağırlığı, iskelet kası gücü ve zihinsel durumdan etkilenebilir. Burada, diyastolik performansta kalp atış hızına (HR) bağlı değişiklikleri tespit etmek ve bir fare HFpEF modelinde kullanışlılığını doğrulamak için bir atriyal pacing protokolünü açıklıyoruz. Yöntem, anestezinin uygulanmasını, entübe edilmesini ve atriyal pacing ile birlikte basınç-hacim (PV) döngü analizinin gerçekleştirilmesini içerir. Bu çalışmada sol ventrikül apikal yaklaşımla bir iletkenlik kateteri yerleştirildi ve özofagusa bir atriyal pacing kateteri yerleştirildi. Temel PV döngüleri, HR ivabradin ile yavaşlatılmadan önce toplandı. PV döngüleri, atriyal pacing yoluyla 400 bpm ila 700 bpm arasında değişen HR artışlarında toplandı ve analiz edildi. Bu protokolü kullanarak, metabolik olarak indüklenen bir HFpEF modelinde HR’ye bağlı diyastolik bozukluğu açıkça gösterdik. Hem gevşeme süresi sabiti (Tau) hem de diyastol sonu basınç-hacim ilişkisi (EDPVR), kontrol farelerine kıyasla HR arttıkça kötüleşti. Sonuç olarak, bu atriyal pacing kontrollü protokol, HR’ye bağlı kardiyak disfonksiyonların saptanmasında yararlıdır. HFpEF fare modellerinde diyastolik disfonksiyonun altında yatan mekanizmaları incelemek için yeni bir yol sağlar ve bu durum için yeni tedaviler geliştirmeye yardımcı olabilir.

Introduction

Kalp yetmezliği, dünya çapında hastaneye yatış ve ölümün önde gelen bir nedenidir ve korunmuş ejeksiyon fraksiyonlu (HFpEF) kalp yetmezliği, tüm kalp yetmezliği tanılarının yaklaşık %50’sini oluşturur. HFpEF, diyastolik disfonksiyon ve bozulmuş egzersiz toleransı ile karakterizedir ve diyastolik disfonksiyon gibi ilişkili hemodinamik anormallikler, egzersiz stresli hemodinamik testler veya MRI taramaları ile açıkça tespit edilebilir 1,2.

Bununla birlikte, deneysel modellerde, HFpEF ile ilgili fizyolojik anormallikleri değerlendirmek için mevcut yöntemler sınırlıdır 3,4. Koşu bandı egzersiz testi (TMT), egzersiz-stres kardiyak hemodinamiğini yansıtabilecek koşu süresini ve mesafesini belirlemek için kullanılır; Bununla birlikte, bu yöntem vücut ağırlığı, iskelet kası gücü ve zihinsel durum gibi dış değişkenlerin müdahalesine karşı hassastır.

Bu sınırlamaları aşmak için, kalp atış hızına (HR) dayalı olarak diyastolik performanstaki ince ama önemli değişiklikleri tespit eden bir atriyal pacing protokolü geliştirdik ve HFpEF5’in bir fare modelinde kullanışlılığını doğruladık. Sempatik sinir ve katekolamin yanıtı, periferik vazodilatasyon, endotel yanıtı ve kalp hızı dahil olmak üzere çeşitli fizyolojik faktörler egzersizle ilişkili kardiyak fonksiyona katkıda bulunur6. Bununla birlikte, bunlar arasında, HR-basınç ilişkisi (Bowditch etkisi olarak da adlandırılır), kardiyak fizyolojik özelliklerinkritik bir belirleyicisi olarak bilinir 7,8,9.

Protokol, basınç gelişim hızı (dp/dt), sistolik sonu basınç-hacim ilişkisi (ESPVR) ve diyastolik sonu basınç-hacim ilişkisi (EDPVR) gibi parametreler dahil olmak üzere sistolik ve diyastolik işlevi değerlendirmek için başlangıçta geleneksel bir basınç-hacim analizi gerçekleştirmeyi içerir. Bununla birlikte, bu parametrelerin, içsel kalp atış hızlarındaki farklılıklar nedeniyle hayvanlar arasında değişebilen HR’den etkilendiğine dikkat edilmelidir. Ek olarak, anestezinin HR üzerindeki etkileri de göz önünde bulundurulmalıdır. Bunu ele almak için, HR, ivabradine ile birlikte atriyal pacing uygulanarak standardize edildi ve kardiyak parametre ölçümleri artımlı kalp hızlarında yapıldı. Özellikle, HR’ye bağlı kardiyak yanıt, HFpEF farelerini kontrol grubu farelerinden ayırırken, başlangıç PV döngü ölçümlerinde (içsel kalp atış hızı kullanılarak) önemli bir fark gözlenmemiştir5.

Bu pacing protokolü nispeten karmaşık görünse de, iyi anlaşıldığında başarı oranı %90’ı aşıyor. Bu protokol, HFpEF fare modellerinde diyastolik disfonksiyonun altında yatan mekanizmaları incelemek ve bu durum için yeni tedavilerin geliştirilmesine yardımcı olmak için yararlı bir yol sağlayacaktır.

Protocol

Bu hayvan protokolü, Kurumsal Hayvan Bakımı ve Kullanımı Komitesi tarafından onaylandı ve Tokyo Üniversitesi’ndeki hayvan deneyleri ve ilgili faaliyetler için yönetmeliklere uydu. Bu çalışmada 8-12 haftalık erkek C57/Bl6J fareler kullanıldı. Hayvanlar ticari bir kaynaktan elde edilmiştir ( bkz. Daha önce tarif edildiği gibi NG-nitro-L-arginin metil ester ile birlikte 15 hafta boyunca yüksek yağlı bir diyet uygulanarak bir HFpEF modeli oluşturulmuştur10….

Representative Results

Temel PV döngü verileri Şekil 1 ve Tablo 1’de gösterilmektedir. Başlangıçta (pacing yokluğunda), kontrol ve HFpEF fareleri arasında gevşeme süresi sabiti (Tau), minimum basınç değişim oranı (dP / dt min) ve EDPVR gibi diyastolik parametrelerde anlamlı bir fark yoktu. Bununla birlikte, HFpEF fareleri, Şekil 1’de gösterildiği gibi daha yüksek kan basıncı ve arteriyel elastikans (Ea) sergiledi ve ventriküler sistol sırasın…

Discussion

Transözofageal pacing uygulaması ile basınç-hacim ilişkilerini değerlendirmek için bir metodoloji sunuyoruz. Egzersiz intoleransı, HFpEF’in temel özelliklerinden biridir, ancak egzersiz sırasında farelerde kardiyak fonksiyonun değerlendirilmesi için herhangi bir teknik mevcut değildir. Pacing protokolümüz, dinlenme koşullarında belirgin olmayabilecek diyastolik disfonksiyonu tespit etmek için değerli bir araç sunar.

Doğru ve tutarlı kalitede bir PV döngüsü elde etmek …

Declarações

The authors have nothing to disclose.

Acknowledgements

Bu çalışma, Fukuda Tıbbi Teknoloji Vakfı’ndan (E.T. ve G.N.’ye) ve JSPS KAKENHI Bilimsel Araştırma Hibesi 21K08047’den (E.T.’ye) araştırma hibeleri ile desteklenmiştir.

Materials

2-0 silk suture, sterlie Alfresa Pharma Corporation, Osaka, Japan 62-9965-57 Surgical Supplies
2-Fr tetrapolar electrode catheter Fukuda Denshi, Japan and UNIQUE MEDICAL, Japan custom-made Surgical Supplies
Albumin Bovine Serum Nacalai Tesque, Inc., Kyoto, Japan 01859-47 Miscellaneous
C57/BI6J mouse Jackson Laboratory animals
Conductance catheter Millar Instruments, Houston, TX PVR 1035
Electrical cautery, Electrocautery Knife Kit ellman-Japan,Osaka, Japan 1-1861-21 Surgical Supplies
Etomidate Tokyo Chemical Industory Co., Ltd., Tokyo Japan E0897 Anesthetic
Grass Instrument S44G Square Pulse Stimulator Astro-Med, West Warwick, RI Pacing equipment
Isoflurane Viatris Inc., Tokyo, Japan 8803998 Anesthetic
Ivabradine Tokyo Chemical Industory Co., Ltd., Tokyo Japan I0847 Miscellaneous
LabChart software ADInstruments, Sydney, Australia LabChart 7 Hemodynamic equipment
MPVS Ultra Millar Instruments, Houston, TX PL3516B49 Hemodynamic equipment
Pancronium bromide Sigma Aldrich Co., St. Louis, MO 15500-66-0 Anesthetic
PE10 polyethylene tube Bio Research Center  Co. Ltd., Tokyo, Japan 62101010 Surgical Supplies
PowerLab 8/35 ADInstruments, Sydney, Australia PL3508/P Hemodynamic equipment
PVR 1035 Millar Instruments, Houston, TX 842-0002 Hemodynamic equipment
Urethane (Ethyl Carbamate) Wako Pure Chemical Industries, Ltd., Osaka, Japan 050-05821 Anesthetic
Vascular Flow Probe Transonic, Ithaca, NY MA1PRB Surgical Supplies

Referências

  1. Backhaus, S. J. Exercise stress real-time cardiac magnetic resonance imaging for noninvasive characterization of heart failure with preserved ejection fraction. Circulation. 143 (15), 1484-1498 (2021).
  2. Borlaug, B. A., Nishimura, R. A., Sorajja, P., Lam, C. S. P., Redfield, M. M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circulation. Heart Failure. 3 (5), 588-595 (2010).
  3. Pacher, P., Nagayama, T., Mukhopadhyay, P., Bátkai, S., David, A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nature Protocols. 3 (9), 1422-1434 (2008).
  4. Cingolani, O. H., Kass, D. A. Pressure-volume relation analysis of mouse ventricular function. American Journal of Physiology – Heart and Circulatory Physiology. 301 (6), 2198-2206 (2011).
  5. Numata, G., et al. A pacing-controlled protocol for frequency-diastolic relations distinguishes diastolic dysfunction specific to a mouse HFpEF model. American Journal of Physiology – Heart and Circulatory Physiology. 323 (3), H523-H527 (2022).
  6. Piña, I. L., et al. Exercise and heart failure. Circulation. 107 (8), 1210-1225 (2003).
  7. Georgakopoulos, D., Kass, D. A. Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart. Journal of Physiology. 534 (2), 535-545 (2001).
  8. Takimoto, E., et al. Frequency- and afterload-dependent cardiac modulation in vivo by troponin I with constitutively active protein kinase A phosphorylation sites. Circulation Research. 94 (4), 496-504 (2004).
  9. Meyer, M., Lewinter, M. M. Heart rate and heart failure with preserved ejection fraction: Time to slow β-blocker use? Circulation. Heart Failure. 12 (8), 006213 (2019).
  10. Schiattarella, G. G., et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 568 (7752), 351-356 (2019).
  11. Abraham, D., Mao, L. Cardiac pressure-volume loop analysis using conductance catheters in mice. Journal of Visualized Experiments. (103), e52942 (2015).
  12. Zhang, B., Davis, J. P., Ziolo, M. T. Cardiac catheterization in mice to measure the pressure volume relationship: Investigating the Bowditch effect. Journal of Visualized Experiments. (100), e52618 (2015).
  13. Townsend, D. W. Measuring pressure volume loops in the mouse. Journal of Visualized Experiments. (111), e53810 (2016).
  14. Georgakopoulos, D., Kass, D. A. Estimation of parallel conductance by dual-frequency conductance catheter in mice. American Journal of Physiology – Heart and Circulatory Physiology. 279 (1), H47 (2000).
check_url/pt/65384?article_type=t

Play Video

Citar este artigo
Numata, G., Takimoto, E. A Pacing-Controlled Procedure for the Assessment of Heart Rate-Dependent Diastolic Functions in Murine Heart Failure Models. J. Vis. Exp. (197), e65384, doi:10.3791/65384 (2023).

View Video