Summary

微波合成条件对氢氧化镍纳米片结构的影响

Published: August 18, 2023
doi:

Summary

氢氧化镍纳米片是通过微波辅助水热反应合成的。该协议表明,用于微波合成的反应温度和时间会影响反应产率、晶体结构和局部配位环境。

Abstract

提出了一种在弱酸性条件下快速微波辅助水热合成氢氧化镍纳米片的方案,并研究了反应温度和时间对材料结构的影响。所有研究的反应条件都产生层状α-Ni(OH)2 纳米片的聚集体。反应温度和时间对材料结构和产物收率有很大影响。在较高温度下合成α-Ni(OH)2 可提高反应产率,降低层间间距,增加晶畴尺寸,改变层间阴离子振动模式的频率,并降低孔径。较长的反应时间可提高反应产率,并产生相似的晶域大小。 原位 监测反应压力表明,在较高的反应温度下获得更高的压力。这种微波辅助合成路线提供了一种快速、高通量、可扩展的工艺,可应用于各种过渡金属氢氧化物的合成和生产,用于多种能量存储、催化、传感器和其他应用。

Introduction

氢氧化镍 Ni(OH)2 用于多种应用,包括镍锌和镍氢电池1234、燃料电池4、水电解槽456789、超级电容器4、光催化剂4、阴离子交换剂10,以及许多其他分析、电化学和传感器应用 4,5。Ni(OH)2 具有两种主要晶体结构:β-Ni(OH)2 和 α-Ni(OH)211。β-Ni(OH)2 采用水镁铁矿型 Mg(OH)2 晶体结构,而 α-Ni(OH)2 是 β-Ni(OH)2 的涡轮层状形式,夹有化学合成4 的残余阴离子和水分子。在 α-Ni(OH)2 中,插层分子不在固定的晶体位置内,但具有一定程度的取向自由度,并且还起到稳定 Ni(OH)2 层的层间胶的作用 4,12。α-Ni(OH)2 的层间阴离子影响平均 Ni氧化态 13,并影响 α-Ni(OH)2(相对于 β-Ni(OH)2)对电池2131415、电容器16 和水电解应用17,18 的电化学性能。

Ni(OH)2 可通过化学沉淀、电化学沉淀、溶胶-凝胶合成或水热/溶剂热合成4.化学沉淀和水热合成路线在Ni(OH)2的生产中被广泛应用,不同的合成条件改变了其形貌、晶体结构和电化学性能。Ni(OH)2 的化学沉淀涉及将高碱性溶液添加到镍 (II) 水溶液中。沉淀物的相和结晶度由所用镍(II)盐和碱性溶液温度、特性和浓度决定4。

Ni(OH)2 的水热合成涉及在加压反应瓶中加热前体镍 (II) 盐的水溶液,允许反应在高于环境压力4 下通常允许的温度下进行。水热反应条件通常有利于β-Ni(OH)2,但α-Ni(OH)2 可以通过以下方式合成:(i)使用插层剂,(ii)使用非水溶液(溶剂热合成),(iii)降低反应温度,或(iv)在反应中加入尿素,从而产生氨插层α-Ni(OH)24。镍盐中 Ni(OH)2 的水热合成通过两步过程进行,该过程涉及水解反应(公式 1),然后是醇化缩合反应(公式 2)。19

[镍(H2O)N]2+ + hH2O ↔ [Ni(OH)h(H2O) N-h](2-h)++ hH3O+1

Ni-OH + Ni-OH2 Ni-OH-Ni + H2O (2

微波化学已被用于各种纳米结构材料的一锅合成,并且基于特定分子或材料将微波能量转化为热量的能力20。在传统的水热反应中,反应是通过反应器直接吸收热量来引发的。相反,在微波辅助水热反应中,加热机理是溶剂在微波场中振荡的偶极极化和产生局部分子摩擦的离子传导20。微波化学可以提高化学反应的反应动力学、选择性和产率20,这使得合成Ni(OH)2的可扩展、工业上可行的方法具有重要意义。

对于碱性电池阴极,与β-Ni(OH)213相比,α-Ni(OH)2相提供了更好的电化学容量,合成α-Ni(OH)2的合成方法特别令人感兴趣。α-Ni(OH)2 已通过多种微波辅助方法合成,包括微波辅助回流21,22、微波辅助水热技术 23,24 和微波辅助碱催化沉淀25。在反应溶液中加入尿素会显著影响反应产率26、机理2627、形貌和晶体结构27。微波辅助分解尿素被确定为获得α-Ni(OH)227的关键组分。乙二醇-水溶液中的水含量已被证明会影响微波辅助合成α-Ni(OH)2纳米片的形态24。当使用硝酸镍水溶液和尿素溶液通过微波辅助热液途径合成时,α-Ni(OH)2 的反应产率取决于溶液pH 26。先前使用 EtOH/H2O、硝酸镍和尿素的前体溶液对微波合成的 α-Ni(OH)2 纳米花的研究发现,温度(在 80-120 °C 范围内)不是关键因素,前提是反应在尿素水解温度 (60 °C) 以上进行)27。最近一篇研究使用乙酸镍四水合物、尿素和水的前驱体溶液微波合成 Ni(OH)2 的论文发现,在 150 °C 的温度下,该材料同时含有 α-Ni(OH)2 和 β-Ni(OH)2 相,这表明温度可能是合成 Ni(OH)2的关键参数 28.

微波辅助水热合成可用于通过使用溶解在乙二醇/H2O溶液12,29,30,31中的金属硝酸盐和尿素组成的前驱体溶液来生产高比表面积的α-Ni(OH)2和α-Co(OH)2。使用为大型微波反应器设计的放大合成合成,合成了用于碱性镍锌电池的金属取代α-Ni(OH)2正极材料12。微波合成的α-Ni(OH)2也被用作制备β-Ni(OH)2纳米片12、析氧反应(OER)电催化剂29的镍铱纳米框架以及燃料电池和水电解槽30的双官能氧电催化剂的前驱体。该微波反应路线也被修改为合成Co(OH)2作为酸性OER电催化剂31和双功能电催化剂30的钴铱纳米框架的前体。微波辅助合成也用于制备Fe取代的α-Ni(OH)2纳米片,Fe取代比改变了结构和磁化强度32。然而,微波合成 α-Ni(OH)2 的分步程序以及评估水-乙二醇溶液中反应时间和温度的变化如何影响材料内层间阴离子的晶体结构、表面积和孔隙率以及局部环境的评估以前没有报道过。

该协议建立了使用快速和可扩展的技术进行α-Ni(OH)2 纳米片的高通量微波合成程序。采用 原位 反应监测、扫描电子显微镜、能量色散X射线光谱、氮气孔隙率、粉末X射线衍射(XRD)和傅里叶变换红外光谱等手段,对反应温度和时间的影响进行了评估,了解合成变量对α-Ni(OH)2 纳米片反应产率、形貌、晶体结构、孔径和局部配位环境的影响。

Protocol

注:微波合成过程的示意图如 图1所示。 1. α-Ni(OH)2 纳米片的微波合成 前体溶液的制备通过混合 15 mL 超纯水 (≥18 MΩ-cm) 和 105 mL 乙二醇来制备前体溶液。加入 5.0 克 Ni(NO3)2 ·6 H2O和4.1 g尿素溶液并盖上盖子。 将前体溶液置于充满冰和水的浴超声仪(40kHz频率)中,并以全功率(?…

Representative Results

反应温度和时间对α-Ni(OH)合成的影响2反应前,前驱体溶液[Ni(NO3)2·6H2O,尿素,乙二醇和水]为透明绿色,pH值为4.41±0.10(图2A和表1)。微波反应的温度(120°C或180°C)会影响溶液的原位反应压力和颜色(图2B-G和图3)。对于120°C反?…

Discussion

微波合成提供了一种生成Ni(OH)2的途径,与传统的水热方法(典型反应时间为4.5小时)相比,该途径明显更快(13-30分钟的反应时间)38。使用这种弱酸性微波合成途径生产超薄α-Ni(OH)2纳米片,观察到反应时间和温度会影响反应的pH值、产率、形貌、孔隙率和所得材料的结构。使用原位反应压力表,在两个120°C反应期间都会发生非常少量的压力积聚,?…

Declarações

The authors have nothing to disclose.

Acknowledgements

S.W.K. 和 C.P.R. 感谢海军研究办公室海军海底研究计划(批准号:N00014-21-1-2072)的支持。S.W.K. 感谢海军研究企业实习计划的支持。C.P.R和C.M.感谢美国国家科学基金会材料研究与教育伙伴关系(PREM)智能材料组装中心(第2122041号奖项)对反应条件分析的支持。

Materials

ATR-FTIR Bruker Tensor II FT-IR spectrometer equipped with a Harrick Scientific SplitPea ATR micro-sampling accessory
Bath sonicator Fisher Scientific 15-337-409
Ethanol  VWR analytical AC61509-0040 200 proof
Ethylene Glycol VWR analytical BDH1125-4LP 99% purity
Falcon Centrifuge tubes VWR analytical 21008-940 50 mL
KimWipes VWR analytical 21905-026
Lab Quest 2 Vernier  LABQ2
Microwave Reactor Anton Parr 165741 Monowave 450
Ni(NO3)2 · 6 H2O Ward's Science 470301-856 Research lab grade
pH Probe Vernier  PH-BTA Calibrated vs standard pH solutions (pH= 4, 7, 11)
Porosemeter Micromeritics  ASAP 2020. Analysis software: Micromeritics, version 4.03
Powder x-ray diffactometer Bruker AXS Advanced Poweder x-ray diffractometer; d-spacing, and crystallite size analyses were performed using Highscore XRD software, and crystal structures were created using VESTA 3 software.
Reaction vial Anton Parr 82723 30 mL G30 wideneck, 20 mL max fill capacity
Reaction vial locking lid Anton Parr 161724 G30 Snap Cap
Reaction vial PTFE septum Anton Parr 161728 Wideneck
Scanning electron microscope FEI Helios Nanolab 400
Urea VWR analytical BDH4602-500G ACS grade

Referências

  1. Liu, B., et al. 120 Years of nickel-based cathodes for alkaline batteries. Journal of Alloys and Compounds. 834, 155185 (2020).
  2. Young, K. H., et al. Fabrications of high-capacity α-Ni(OH)2. Batteries. 3, 6 (2017).
  3. Huang, M., Li, M., Niu, C., Li, Q., Mai, L. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Advanced Functional Materials. 29 (11), 1807847 (2019).
  4. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences. 471 (2174), 20140792 (2015).
  5. Miao, Y., et al. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics. 53, 428-439 (2014).
  6. Suen, N. T., et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews. 46 (2), 337-365 (2017).
  7. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T., Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis. 5 (9), 5380-5387 (2015).
  8. Rossini, P. d. O., et al. Ni-based double hydroxides as electrocatalysts in chemical sensors: a review. Trends in Analytical Chemistry. 126, 115859 (2020).
  9. Yu, Z., Bai, Y., Tsekouras, G., Cheng, Z. Recent advances in Ni-Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select. 3 (4), 766-791 (2021).
  10. Othman, M. R., Helwani, Z., Martunus, F. W. J. N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Applied Organometallic Chemistry. 23 (9), 335-346 (2009).
  11. Bode, V. H., Dehmelt, K., Witte, J. About the nickel hydroxide electrode. II. On the oxidation products of nickel(II) hydroxidesZeitschrift für Anorganische und Allgemeine Chemie. 366, 1-21 (1969).
  12. Kimmel, S. W., et al. Capacity and phase stability of metal-substituted α-Ni(OH)2 nanosheets in aqueous Ni-Zn batteries. Materials Advances. 2 (9), 3060-3074 (2021).
  13. Corrigan, D. A., Knight, S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. Journal of the Electrochemical Society. 136 (3), 613-619 (1989).
  14. Shangguan, E., et al. A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. Journal of Power Sources. 282, 158-168 (2015).
  15. Li, Y. W., et al. Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy. 35 (6), 2539-2545 (2010).
  16. Wang, C., Zhang, X., Xu, Z., Sun, X., Ma, Y. Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: structural design and green synthesis for advanced electrochemical storage. ACS Applied Materials & Interfaces. 7 (35), 19601-19610 (2015).
  17. Hunter, B. M., Hieringer, W., Winkler, J. R., Gray, H. B., Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science. 9 (5), 1734-1743 (2016).
  18. Zhou, D., et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research. 11, 1358-1368 (2018).
  19. Cochran, E. A., Woods, K. N., Johnson, D. W., Page, C. J., Boettcher, S. W. Unique chemistries of metal-nitrate precursors to form metal-oxide thin films from solution: materials for electronic and energy applications. Journal of Materials Chemistry A. 7 (42), 24124-24149 (2019).
  20. Bilecka, I., Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2 (8), 1358-1374 (2010).
  21. Zhang, X., et al. Microwave-assisted synthesis of 3D flowerlike alpha-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences. 58, 1871-1876 (2015).
  22. Li, J., Wei, M., Chu, W., Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chemical Engineering Journal. 316, 277-287 (2017).
  23. Tao, Y., et al. Microwave synthesis of nickel/cobalt double hydroxide ultrathin flowerclusters with three-dimensional structures for high-performance supercapacitors. Electrochimica Acta. 111, 71-79 (2013).
  24. Zhu, Y., et al. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Scientific Reports. 4, 1-7 (2014).
  25. Benito, P., Labajos, F. M., Rives, V. Microwave-treated layered double hydroxides containing Ni and Al: the effect of added Zn. Journal of Solid State Chemistry. 179 (12), 3784-3797 (2006).
  26. Soler-Illia, G. J. d. A., Jobbágy, M., Regazzoni, A. E., Blesa, M. A. Synthesis of nickel hydroxide by homogeneous alkalinization. precipitation mechanism. Chemistry of Materials. 11 (11), 3140-3146 (1999).
  27. Xu, L., et al. 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chemistry of Materials. 20 (1), 308-316 (2008).
  28. Alshareef, S. F., Alhebshi, N. A., Almashhori, K., Alshaikheid, H. S., Al-Hazmi, F. A ten-minute synthesis of alpha-Ni(OH)2 nanoflakes assisted by microwave on flexible stainless-steel for energy storage devices. Nanomaterials. 12 (11), 1911 (2022).
  29. Godínez-Salomón, F., et al. Self-supported hydrous iridium-nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catalysis. 8 (11), 10498-10520 (2018).
  30. Godínez-Salomón, F., Albiter, L., Mendoza-Cruz, R., Rhodes, C. P. Bimetallic two-dimensional nanoframes: high activity acidic bifunctional oxygen reduction and evolution electrocatalysts. ACS Applied Energy Materials. 3 (3), 2404-2421 (2020).
  31. Ying, Y., et al. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Advances. 3 (7), 1976-1996 (2021).
  32. Kimmel, S. W., et al. Structure and magnetism of iron-substituted nickel hydroxide nanosheets. Magnetochemistry. 9 (1), 25-47 (2023).
  33. Thommes, M., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 87 (9-10), 1051-1069 (2015).
  34. Birkholz, M., Fewster, P. F., Genzel, C. . Thin Film Analysis by X-ray Scattering. , (2006).
  35. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. Raman and infrared spectroscopy of alpha and beta phases of thin nickel hydroxide films electrochemically formed on nickel. Journal of Physical Chemistry A. 116 (25), 6771-6784 (2012).
  36. Choy, J. H., Kwon, Y. M., Han, K. S., Song, S. W., Chang, S. H. Intra- and inter-layer structures of layered hydroxy double salts, Ni1-xZn2x(OH)2(CH3CO2)2xnH2O. Materials Letters. 34 (3-6), 356-363 (1998).
  37. Momma, K., Izumi, F. VESTA for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography. 44 (6), 1272-1276 (2011).
  38. Godinez-Salomon, F., Mendoza-Cruz, R., Arellano-Jimenez, M. J., Jose-Yacaman, M., Rhodes, C. P. Metallic two-dimensional nanoframes: unsupported hierarchical nickel-platinum alloy nanoarchitectures with enhanced electrochemical oxygen reduction activity and stability. ACS Applied Materials & Interfaces. 9 (22), 18660-18674 (2017).
  39. Shakhashiri, B. Z., Dirreen, G. E., Juergens, F. Color, solubility, and complex ion equilibria of nickel (II) species in aqueous solution. Journal of Chemical Education. 57 (12), 900-901 (1980).
check_url/pt/65412?article_type=t

Play Video

Citar este artigo
Kimmel, S. W., Kuykendall, V., Mough, C., Landry, A., Rhodes, C. P. Effect of Microwave Synthesis Conditions on the Structure of Nickel Hydroxide Nanosheets. J. Vis. Exp. (198), e65412, doi:10.3791/65412 (2023).

View Video