Summary

用于小鼠胰腺活体成像的稳定窗口

Published: October 06, 2023
doi:

Summary

我们提出了一种手术植入稳定留置光学窗口的方案,用于小鼠胰腺的亚细胞分辨率成像,允许对健康和患病胰腺进行连续和纵向研究。

Abstract

胰腺的生理学和病理生理学很复杂。胰腺疾病,如胰腺炎和胰腺癌(PDAC)的发病率和死亡率都很高。活体成像 (IVI) 是一种强大的技术,能够对健康和患病状态的组织进行高分辨率成像,从而可以实时观察细胞动力学。由于器官的深层内脏和顺应性,小鼠胰腺的 IVI 带来了重大挑战,这使得它极易受到损伤和运动伪影。

这里描述的是植入用于小鼠 Pancreas (SWIP) 的 Intravital 成像的 S稳定 W禀露的过程。SWIP允许小鼠胰腺在正常健康状态下,在从健康胰腺转变为蔚蓝诱导的急性胰腺炎期间,以及在胰腺肿瘤等恶性状态下进行IVI。结合基因标记的细胞或荧光染料的给药,SWIP可以测量单细胞和亚细胞动力学(包括单细胞和集体迁移),以及在多天内对同一感兴趣区域进行连续成像。

捕获肿瘤细胞迁移的能力尤为重要,因为 PDAC 中癌症相关死亡的主要原因是压倒性的转移负担。了解 PDAC 转移的生理动力学是一项关键的未满足需求,对于改善患者预后至关重要。总体而言,SWIP提供了更好的成像稳定性,并扩大了IVI在健康胰腺和恶性胰腺疾病中的应用。

Introduction

良性和恶性胰腺疾病可能危及生命,对其病理生理学的理解存在相当大的差距。胰腺炎(胰腺炎症)是美国胃肠道疾病相关住院和再入院的第三大原因,与大量发病率、死亡率和社会经济负担相关1.胰腺导管腺癌 (PDAC) 是癌症相关死亡的第三大原因 2,占大多数胰腺恶性肿瘤3,预示着 5 年生存率仅为 11%2PDAC癌症相关死亡的主要原因是压倒性的转移负担。不幸的是,大多数患者表现为转移性疾病。因此,了解PDAC转移的动态是癌症研究领域中一个关键的未满足需求。

炎症和胰腺转移级联反应的机制知之甚少。造成这种知识差距的一个主要因素是无法在 体内观察胰腺细胞动力学。对这些细胞动力学的直接观察有望揭示关键靶点,以利用和改善胰腺疾病患者的诊断和治疗。

活体成像 (IVI) 是一种显微镜技术,使研究人员能够实时可视化和研究活体动物的生物过程。IVI允许在 体内 和所讨论的生物过程的天然环境中对细胞内和微环境动力学进行高分辨率、直接的可视化。因此,IVI允许对健康和病理过程 进行体内 观察。

MRI、PET 和 CT 等现代全身成像方式提供了整个器官的极好视图,甚至可以在临床症状出现之前揭示病理4.然而,它们无法达到单细胞分辨率或揭示疾病的早期阶段——胰腺炎或恶性肿瘤。

先前的研究使用单细胞分辨率 IVI 观察皮肤5,6、乳腺7、肺8、肝9、脑 10 和胰腺肿瘤 11 的良性和恶性疾病从而深入了解疾病进展的机制 12然而,小鼠胰腺对使用 IVI 实现单细胞分辨率构成了重大障碍,这主要是由于其深脏位置和高依从性。此外,它是肠系膜内一个分支的、弥漫分布的器官,与脾脏、小肠和胃相连,使其难以进入。该组织对邻近蠕动和呼吸引起的运动也高度敏感。最小化胰腺的运动对于单细胞分辨率显微镜至关重要,因为即使是几微米的运动伪影也会使图像模糊和扭曲,从而无法跟踪单个细胞的动态13.

要进行 IVI,必须通过手术植入腹部成像窗口 (AIW) 9,11。为了通过手术植入 AIW,将金属窗框缝合到腹壁中。之后,使用氰基丙烯酸酯粘合剂将感兴趣的器官连接到框架上。虽然这对于一些刚性内脏器官(例如肝脏、脾脏、刚性肿瘤)来说已经足够了,但由于组织的顺应质地和复杂的结构,对健康小鼠胰腺进行成像的尝试会受到次优横向和轴向稳定性的影响14.为了解决这一局限性,Park等人[14]开发了一种专门为健康胰腺设计的成像窗口。该胰腺成像窗口 (PIW) 通过在盖玻片下方的窗框内加入一个水平金属架子,稳定组织并保持其与盖玻片的接触,最大限度地减少肠道运动和呼吸的影响。虽然 PIW 提供了更高的横向稳定性,但我们发现该窗口仍然表现出轴向漂移,并且由于金属架和Coverslip 15 之间的狭窄间隙,还阻止了大型实体瘤的成像。

为了解决这些局限性,我们开发了用于小鼠 Pancreas 的 Intravital 成像的 S稳定 Window (SWIP),这是一种植入式成像窗口,能够实现健康和患病胰腺的稳定长期成像(图 115。在这里,我们为用于植入 SWIP 的外科手术提供了全面的方案。虽然主要目的是研究转移的动态机制,但这种方法也可用于探索胰腺生物学和病理学的各个方面。

Protocol

本协议中描述的所有程序均已按照脊椎动物使用的指南和规定执行,包括阿尔伯特爱因斯坦医学院机构动物护理和使用委员会(IACUC)的事先批准。 1.窗户的钝化 注意:不锈钢的钝化可以清除金属中的污染物并形成一层薄的氧化层,从而大大提高金属与软组织的生物相容性,甚至超过钛16。 通过用 1% (w/v) 酶活性洗…

Representative Results

图 1 改编自 Du 等人 15,显示了小鼠胰腺延时 IVI 电影的图像静止图像。在初始沉降期(成像的第一个小时,图1A)内可以观察到一些组织运动。然而,在这个稳定期(>75分钟)之后继续成像,我们观察到横向和轴向稳定性的增加(图1B)。将 SWIP 的稳定性与之前的 AIW 和 PIW 成像窗口进行比较,可以确定所有窗口?…

Discussion

这里描述的SWIP协议通过利用十字绣篮技术提供了一种改进的胰腺组织稳定方法。早期的腹部成像窗口 (AIW) 能够对腹部内脏器官进行活体成像 (IVI),但不能充分限制胰腺等软组织的运动。作为回应,Park等人开发了一种胰腺成像窗口(PIW),该窗口包含一个水平金属架子,可以提高胰腺组织的稳定性,同时保持与玻璃盖玻片的接触。虽然这种方法提高了横向稳定性,但它限制了实体胰腺肿瘤?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Evelyn Lipper 慈善基金会、Gruss-Lipper 生物光子学中心、癌症研究综合成像计划、NIH T-32 奖学金 (CA200561) 和国防部胰腺癌研究计划 (PCARP) 资助PA210223P1。

Materials

1% (w/v) solution of enzyme-active detergent Alconox Inc NA Concentrated, anionic detergent with protease enzymes for manual and ultrasonic cleaning
5% (w/v) solution of sodium hydroxide Sigma-Aldrich S8045 Passivation reagent
5 mm cover glass Electron Microscopy Sciences 72296-05 Round Glass Coverslips 
7% (w/v) solution of citric acid Sigma-Aldrich  251275 Passivation reagent
28G 1 mL BD Insulin Syringe BD 329410 Syringe for cell injection
Baytril 100 (enrofloxacin) Bayer (Santa Cruz Biotechnology) sc-362890Rx Antibiotic
Bench Mount Heat Lamp McMaster-Carr 3349K51 Heat lamp
Buprenorphine 0.3 mg/mL Covetrus North America 059122 Buprenorphine Analgesia
Castroviejo Curved Scissors World Precision Instruments WP2220 Scissor for cutting tissue
C57BL/6J Mouse Jackson Laboratory 000664  C57BL/6J Mouse
Chlorhexidine solution Durvet 7-45801-10258-3 Chlorhexidine Disinfectant Solution
Compressed air canister Falcon DPSJB-12 Compressed air for drying tissue
Cyano acrylate – Gel Superglue Staples 234790-6 Skin Glue
Cyano acrylate – Liquid Superglue Staples LOC1647358 Coverslip Glue
DPBS 1x Corning 21-031-CV DPBS for cerulein/cell injections
Gemini Cautery Kit Harvard Apparatus 726067 Cautery Pen
Germinator 500 CellPoint Scientific GER 5287-120V Bead Sterilizer
Graefe Micro Dissecting Forceps; Serrated; Slight Curve; 0.8 mm Tip Width; 4" Length Roboz Surgical RS-5135  Graefe Micro Dissecting Forceps
Imaging microscope NA NA See Entenberg et al. 2011 [27]
Imaging software NA NA See Entenberg et al. 2011 [27]
Isoethesia (isoflurane) Henry Schein Animal Health 50033 Isoflurane Anesthesia
Kim Wipes Fisher Scientific 06-666-A  Kim Wipes
Laboratory tape Fisher Scientific 159015R Laboratory Tape
Mouse Dissecting Kit World Precision Instruments MOUSEKIT Surgical Instruments
Mouse Paw Pulse Oximeter Sensor Kent Scientific Corpo MSTAT Sensor-MSE Pulse Oximeter
Mouse Surgisuite Kent Scientific SURGI-M04 Heated platform
Nair Hair Removal Lotion Amazon B001RVMR7K Depilatory Lotion
Oxygen TechAir OX TM Oxygen
PERMA-HAND Black Braided Silk Sutures, ETHICON Size 5-0 VWR 95056-872 Silk Suture
Phosphate Buffered Saline 1x Life Technologies 10010-023 PBS
PhysioSuite System Kent Scientific PhysioSuite Heated Platform Controller
Puralube Henry Schein Animal Health 008897 Eye Lubricant
Puritan Nonsterile Cotton-Tipped Swabs  Fisher Scientific 867WCNOGLUE Cotton Swabs
SHARP Precision Barrier Tips, For P-100, 100 µL Denville Scientific Inc. P1125 100 µL Pipet Tips
Tetramethylrhodamine isothiocyanate–Dextran Sigma-Aldrich T1287-500MG Vascular Label
Window-fixturing plate NA NA Custom made plate for window placement on microscope stage. Plate is made of 0.008 in stainless steel shim stock. For dimensions of plate see Entenberg et al., 2018 [8].
Window Frame NA NA The window is composed of a steel frame with a central aperture that accepts a 5 mm coverslip. A groove of 1.75 mm around the circumference of the frame provides space for the peritoneal muscle and skin layers to adhere to. See Entenberg et al., 2018 [8].

Referências

  1. Peery, A. F., et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2021. Gastroenterology. 162 (2), 621-644 (2022).
  2. Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians. 73 (1), 17-48 (2023).
  3. Adamska, A., Domenichini, A., Falasca, M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. International Journal of Molecular Sciences. 18 (7), 1338 (2017).
  4. Coste, A., Oktay, M. H., Condeelis, J. S., Entenberg, D. Intravital imaging techniques for biomedical and clinical research. Cytometry A. 97 (5), 448-457 (2020).
  5. Peters, N. C., et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 321 (5891), 970-974 (2008).
  6. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K., Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochemistry and Cell Biology. 130 (6), 1147-1154 (2008).
  7. Harney, A. S., et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discovery. 5 (9), 932-943 (2015).
  8. Entenberg, D., et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nature Methods. 15 (1), 73-80 (2018).
  9. Ritsma, L., et al. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Science Translational Medicine. 4 (158), 158ra145 (2012).
  10. Park, K., You, J., Du, C., Pan, Y. Cranial window implantation on mouse cortex to study microvascular change induced by cocaine. Quantitative Imaging in Medicine and Surgery. 5 (1), 97-107 (2015).
  11. Beerling, E., Oosterom, I., Voest, E., Lolkema, M., van Rheenen, J. Intravital characterization of tumor cell migration in pancreatic cancer. Intravital. 5 (3), e1261773 (2016).
  12. Entenberg, D., Oktay, M. H., Condeelis, J. S. Intravital imaging to study cancer progression and metastasis. Nature Reviews: Cancer. 23 (1), 25-42 (2023).
  13. Entenberg, D., et al. time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods. 128, 65-77 (2017).
  14. Park, I., Hong, S., Hwang, Y., Kim, P. A novel pancreatic imaging window for stabilized longitudinal in vivo observation of pancreatic islets in murine model. Diabetes & Metabolism Journal. 44 (1), 193-198 (2020).
  15. Du, W., et al. SWIP-a stabilized window for intravital imaging of the murine pancreas. Open Biology Journal. 12 (6), 210273 (2022).
  16. DeBold, T. A. M., James, W. . How To Passivate Stainless Steel Parts. , (2003).
  17. Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E., Rebane, A. Two-photon absorption properties of fluorescent proteins. Nature Methods. 8 (5), 393-399 (2011).
  18. Ueki, H., Wang, I. H., Zhao, D., Gunzer, M., Kawaoka, Y. Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nature Protocols. 15 (3), 1041-1065 (2020).
  19. Ewald, A. J., Werb, Z., Egeblad, M. Monitoring of vital signs for long-term survival of mice under anesthesia. Cold Spring Harbor Protocols. 2011 (2), pdb prot5563 (2011).
  20. Moral, J. A., et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature. 579 (7797), 130-135 (2020).
  21. Erstad, D. J., et al. Orthotopic and heterotopic murine models of pancreatic cancer and their different responses to FOLFIRINOX chemotherapy. Disease Models & Mechanisms. 11 (7), dmm034793 (2018).
  22. Harney, A. S., Wang, Y., Condeelis, J. S., Entenberg, D. Extended time-lapse intravital imaging of real-time multicellular dynamics in the tumor microenvironment. Journal of Visualized Experiments. (112), e54042 (2016).
  23. Entenberg, D., et al. Imaging tumor cell movement in vivo. Current Protocols in Cell Biology. Chapter 19, 19.7.1-19.7.19 (2013).
  24. Entenberg, D., et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nature Protocols. 6 (10), 1500-1520 (2011).
  25. Rodriguez-Tirado, C., et al. Long-term high-resolution intravital microscopy in the lung with a vacuum stabilized imaging window. Journal of Visualized Experiments. (116), 54603 (2016).
  26. Seynhaeve, A. L. B., Ten Hagen, T. L. M. Intravital microscopy of tumor-associated vasculature using advanced dorsal skinfold window chambers on transgenic fluorescent mice. Journal of Visualized Experiments. (131), 55115 (2018).
  27. Gorelick, F. S., Lerch, M. M. Do animal models of acute pancreatitis reproduce human disease. Cellular and Molecular Gastroenterology and Hepatology. 4 (2), 251-262 (2017).
  28. Dolai, S., et al. Depletion of the membrane-fusion regulator Munc18c attenuates caerulein hyperstimulation-induced pancreatitis. Journal of Biological Chemistry. 293 (7), 2510-2522 (2018).
  29. Niederau, C., Ferrell, L. D., Grendell, J. H. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology. 88 (5 Pt 1), 1192-1204 (1985).
  30. Dunphy, M. P., Entenberg, D., Toledo-Crow, R., Larson, S. M. In vivo microcartography and subcellular imaging of tumor angiogenesis: a novel platform for translational angiogenesis research. Microvascular Research. 78 (1), 51-56 (2009).
  31. Shanja-Grabarz, X., Coste, A., Entenberg, D., Di Cristofano, A. Real-time, high-resolution imaging of tumor cells in genetically engineered and orthotopic models of thyroid cancer. Endocrine-Related Cancer. 27 (10), 529-539 (2020).
check_url/pt/65498?article_type=t

Play Video

Citar este artigo
Petersen, J., Du, W., Adkisson, C., Gravekamp, C., Oktay, M. H., Condeelis, J., Panarelli, N. C., McAuliffe, J. C., Entenberg, D. Stabilized Window for Intravital Imaging of the Murine Pancreas. J. Vis. Exp. (200), e65498, doi:10.3791/65498 (2023).

View Video