Summary

相位角和BIVA Z评分分析在急诊科急性心力衰竭患者中的临床应用

Published: June 30, 2023
doi:

Summary

在本协议中,我们解释了如何获得和解释通过生物电阻抗获得的相位角值和生物电阻抗矢量分析 (BIVA) Z 评分在急诊科收治的急性心力衰竭患者中,以及它们作为预测标志物的临床适用性90 天事件的预后。

Abstract

急性心力衰竭的特征是神经激素激活,导致钠和水潴留,并导致身体成分改变,例如体液充血或全身充血增加。这种情况是入院的最常见原因之一,并且与不良预后有关。相位角间接测量细胞内状态、细胞完整性、活力以及细胞内和细胞外体水之间的空间分布。该参数已被发现是健康状况的预测指标,也是生存率和其他临床结果的指标。此外,入院时相位角值为<4.8°与急性心力衰竭患者的死亡率较高相关。然而,低相位角值可能是由于心力衰竭中存在的改变,例如液体从细胞内体水 (ICW) 室转移到 ECW(细胞外体水)室,以及体细胞质量同时减少(这可能反映营养不良)。因此,低相位角可能是由于水合过度和/或营养不良。BIVA通过图形矢量(R-Xc图)提供有关体细胞质量和充血状态的附加信息。此外,与原始 R-Xc 图上百分位数的椭圆具有相同模式的 BIVA Z 分数分析(与参考组平均值的标准差数)可用于检测软组织质量或组织水合作用的变化,并可以帮助研究人员比较不同研究人群的变化。该协议解释了如何获取和解释相位角值和 BIVA Z 评分分析、它们的临床适用性以及它们作为急性心力衰竭急诊科患者 90 天事件预后的预测标志物的有用性。

Introduction

急性心力衰竭 (AHF) 由心衰竭衍生物的体征、症状和加重以及临床、血流动力学和神经激素异常(包括全身炎症激活导致钠和水潴留)的组合引起1。这种长期积累导致间质糖胺聚糖 (GAG) 网络功能失调,导致缓冲能力降低并改变 GAG 网络的形式和功能 1,2。由于液体从细胞内空间转移到细胞外空间3,这导致了身体成分的改变,从而导致体液增加并导致充血,这是 HF 住院的最常见原因。它主要是液体超负荷、室积液再分布或两者机制的结合,需要立即就医4,5。这种情况是预后不良的主要预测因素之一6,7

考虑到 AHF 是 65 岁以上患者住院的最常见原因8,大约 90% 的急诊科患者出现液体超负荷6,其中约 50% 的患者出院时出现持续的呼吸困难和疲劳症状,和/或体重减轻很少或没有减轻9.出院后住院死亡率为 4%-8%;3 个月时从 8% 增加到 15%,对于再住院,3 个月时的比率从 30% 到 38%不等 10.因此,在急诊科等实时和急性环境中快速准确地评估充血对于治疗管理11 和确定疾病预后、发病率和死亡率6至关重要。

生物电阻抗分析(BIA)已被建议用于估计身体成分是否安全、无创和便携技术 12.为了估计全身阻抗,BIA 使用相敏阻抗分析仪,该分析仪通过放置在手和脚上的四极表面电极引入恒定的交流电12。该方法结合了电阻 (R)、电抗 (Xc) 和相角 (PhA)13,其中 R 是交流电流过细胞内和细胞外离子溶液的阻力。Xc是组织界面、细胞膜和细胞器在通过施用电流12时传导(介电成分)或顺应性的延迟。PhA 反映了 R 和 Xc 之间的关系。它来源于组织的电学特性;它表示为细胞膜和组织界面处电压和电流之间的滞后,并用相敏器件14151617 测量。

PhA 是根据 R 和 Xc 的原始数据计算得出的 (PA [度] = 反正切 (Xc/R) x (180°/π)),它被认为是细胞健康和细胞膜结构的指标之一18,以及 ICW 和 ECW 空间分布的指标,即隔室重新分布的改变(特别是从细胞内到细胞外水的变化, 低相位角可以显示)19.因此,低 PhA 值可能是由于水合过度和/或营养不良,Z 评分可用于区分这种低 PhA 是由于软组织质量的损失、组织水合作用的增加,还是两者兼而有之。此外,Z 分数的转换可以帮助研究人员比较不同研究人群的变化 3,14

此外,PhA 被认为是健康状况的预测因子、生存指标和不同临床结果的预后标志物 3,20,即使在其他临床条件下也是如此 20,21,22,23,其中高 PhA 值表明细胞膜完整性和活力更高 10,13因此功能更强大。这与低PhA值形成鲜明对比,低PhA值反映了膜的完整性和通透性损失,导致细胞功能受损甚至细胞死亡14,22,24。在慢性心力衰竭 (CHF) 患者中,较小的 PhA 值与较差的功能分类相关25。此外,PhA 测量的优点之一是它不需要召回的参数、体重或生物标志物。

一些研究建议对液体位移和液体再分布改变或水合状态不恒定的患者(例如 AHF26 中的患者)使用原始 BIA 测量。这是因为 BIA 基于估计全身水分 (TBW)、细胞外体内水分 (ECW) 和细胞内体内水分 (ICW) 的回归方程。因此,由于与软组织水合作用的生理关系,此类患者的瘦体重和脂肪量估计存在偏差27

生物电阻抗矢量分析(BIVA)方法克服了传统BIA方法28的一些局限性。它通过对身体成分的半定量评估来提供额外的信息,包括体细胞质量 (BCM)、细胞质量完整性和水合状态29。因此,它允许通过R-Xc图28,30上的矢量分布和距离模式来估计体液体积。BIVA 用于创建阻抗 (Z) 的矢量图,使用从 BIA 导出的 50 kHz 频率下的全身 R 和 Xc 值。

为了调整 R 和 Xc 的原始值,参数 R 和 Xc 由高度 (H) 标准化,以 Ohm/m 表示为 R/H 和 Xc/H,并绘制为向量;该向量在 R-Xc 图16,28 上具有长度(与 TBW 成正比)和方向。

性别特异性 R-Xc 图包含三个椭圆,对应于健康参考人群283132 的 50%75% 和 95% 容差椭圆;椭圆的椭球形式由 R/H 和 Xc/H 之间的关系决定。然而,为了评估特定性别参考健康人群中的阻抗参数,将原始原始 BIA 参数转换为双变量 Z 评分(在 BIVA Z 评分分析中)并绘制在 R-Xc Z 评分图33,34 上。该图与 R-Xc 图相比,将标准化 R/H 和 Xc/H 表示为双变量 Z 分数,即 Z(R) 和 Z(Xc) 显示与参考组平均值33 相差的标准差数。Z 分数的容差椭圆与原始 R-Xc 图31,33 上百分位数的容差椭圆保持相同的模式。R-Xc 和 R-Xc 的 Z 评分图显示软组织质量和组织水合作用的变化与回归方程或体重无关。

沿椭圆长轴的矢量位移表明水化状态的变化;低于椭圆 75% 极点的缩短向量表明凹陷性水肿(敏感性 = 75%,特异性 = 86%);然而,AHF 和 CHF 患者检测凹陷性水肿的最佳阈值不同,其中 75% 的下极对应于 AHF 患者,50% 对应于 CHF 患者的水肿(敏感性 = 85%,特异性 = 87%)35。另一方面,沿短轴的矢量位移对应于细胞质量。椭圆的左侧表示细胞质量高(即更多的软组织),其中较短的向量对应于肥胖个体,并且其特征在于与具有较长向量的运动者相似的阶段。相反,右侧表示较少的体细胞质量21,34;根据Picolli等人31,33,厌食症、HIV和癌症组的载体评分位于短轴的右侧对应于恶病质的类别。

本研究旨在解释如何在急诊科收治的 AHF 患者中使用 BIA 获得和解释 PhA 值,并展示其作为 90 天事件预后的预测标志物的临床适用性/有用性。

Protocol

该协议已获得国家医学科学与营养研究所研究伦理委员会Salvador Zubirán(参考文献3057)的批准。为了进行 BIA 测量,使用了四极多频设备(参见 材料表)。该设备在50 kHz的频率下提供了电阻(R)、电抗(Xc)和相位角(PhA)的准确原始值,从而能够以最佳信噪比测量阻抗。使用的粘性电极需要符合制造商的建议。已获得参与研究的患者的知情书面同意。 1. 实…

Representative Results

根据上述方案,我们提供了四名入住急诊科的 AHF 患者(两名女性和两名男性)的数据,作为相位角值和 BIVA Z 评分分析的临床适用性示例。在入院后 24 小时内使用相位敏感多频设备进行 BIA 测量。 为了根据年龄组的平均值计算双变量 Z 分数,使用了以下公式:Z(R) = (年龄组的 R/H 平均值 – 参考人群的 R/H 平均值)/参考人群的标准差,以及 Z(Xc) = (年龄组的 Xc/H 平均值 -…

Discussion

该协议描述了在临床实践中使用 R-Xc Z 评分分析的效用,用于因 AHF 入院的急诊科患者。考虑到 AHF 患者入院的主要原因是充血,其快速准确的检测和评估对患者的预后至关重要6.

本文阐述了 AHF 的各种临床表现,以及如何使用 BIVA Z 评分分析(充血状态和 BCM)准确可靠地评估和分类患者;此外,PhA <4.8° 患者的特征与其他与预后不良相关的预测因子一致,例如?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者要感谢教授。意大利帕多瓦大学医学和外科科学系的 Piccoli 和 Pastori 提供 BIVA 软件。这项研究没有从公共、商业或非营利部门的资金、机构获得任何具体的资助。该协议/研究是玛丽亚·费尔南达·伯纳尔·塞瓦略斯(MaríaFernanda Bernal-Ceballos)的博士论文的一部分,该论文由国家科学技术委员会(CONACYT)奖学金(CVU 856465)支持。

Materials

Alcohol 70% swabs  NA NA Any brand can be used
BIVA software 2002 NA NA Is a sofware created for academic use, can be download in http:// www.renalgate.it/formule_calcolatori/ bioimpedenza.htm in "LE FORMULE DEL Prof. Piccoli" section
Chlorhexidine Wipes NA NA Any brand can be used
Examination table NA NA Any brand can be used
Leadwires square socket BodyStat SQ-WIRES
Long Bodystat 0525 electrodes BodyStat BS-EL4000
Quadscan 4000 equipment BodyStat BS-4000 Impedance measuring range:
20 – 1300 Ω ohms
Test Current: 620 μA
Frequency: 5, 50, 100, 200 kHz Accuracy: Impedance 5 kHz: +/- 2 Ω Impedance 50 kHz: +/- 2 Ω Impedance 100 kHz: +/- 3 Ω Impedance 200 kHz: +/- 3 Ω
Resistance 50 kHz: +/- 2 Ω
Reactance 50 kHz: +/- 1 Ω
Phase Angle 50 kHz: +/- 0.2° Calibration: A resistor is supplied for independent verification from time to time.
The impedance value should read between 496 and 503 Ω.

Referências

  1. Boorsma, E. M., et al. Congestion in heart failure: a contemporary look at physiology, diagnosis, and treatment. Nature reviews. 17 (10), 641-655 (2020).
  2. Arrigo, M., Parissis, J. T., Akiyama, E., Mebazaa, A. Understanding acute heart failure: pathophysiology and diagnosis. European Heart Journal Supplements. 18 (suppl G), G11-G18 (2016).
  3. Norman, K., Stobäus, N., Pirlich, M., Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clinical Nutrition. 31 (6), 854-861 (2012).
  4. Núñez, J., et al. Congestion in heart failure: a circulating biomarker-based perspective. A review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology. European Journal of Heart Failure. 24 (10), 1751-1766 (2022).
  5. Scicchitano, P., Massari, F. The role of bioelectrical phase angle in patients with heart failure. Reviews in Endocrine & Metabolic Disorders. 24 (3), 465-477 (2022).
  6. Palazzuoli, A., Evangelista, I., Nuti, R. Congestion occurrence and evaluation in acute heart failure scenario: time to reconsider different pathways of volume overload. Heart Failure reviews. 25 (1), 119-131 (2020).
  7. Girerd, N., et al. Integrative Assessment of congestion in heart failure throughout the patient journey. JACC Heart Failure. 6 (4), 273-285 (2018).
  8. Felker, G. M. Diuretic strategies in patients with acute decompensated heart failure. The New England Journal of Medicine. 364 (9), 797-805 (2011).
  9. Gheorghiade, M., Filippatos, G., De Luca, L., Burnett, J. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. The American Journal of Medicine. 119 (12 Suppl 1), S3-S10 (2006).
  10. Di Somma, S., Vetrone, F., Maisel, A. S. Bioimpedance vector analysis (BIVA) for diagnosis and management of acute heart failure. Current Emergency and Hospital Medicine Reports. 2, 104-111 (2014).
  11. Scicchitano, P., et al. Sex differences in the evaluation of congestion markers in patients with acute heart failure. Journal of Cardiovascular Development and Disease. 9 (3), 67 (2022).
  12. . Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. The American Journal of Clinical Nutrition. 64 (3), 524S-532S (1996).
  13. Kushner, R. F. Bioelectrical impedance analysis: a review of principles and applications. Journal of the American College of Nutrition. 11 (2), 199-209 (1992).
  14. Lukaski, H. C., Kyle, U. G., Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio. Current Opinion in Clinical Nutrition and Metabolic Care. 20 (5), 330-339 (2017).
  15. Lukaski, H. C., Vega Diaz, N., Talluri, A., Nescolarde, L., L, Classification of hydration in clinical conditions: indirect and direct approaches using bioimpedance. Nutrients. 11 (4), 809 (2019).
  16. Lukaski, H. C. Evolution of bioimpedance: a circuitous journey from the estimation of physiological function to assessment of body composition and a return to clinical research. European Journal of Clinical Nutrition. 67 (1), S2-S9 (2013).
  17. Moonen, H. P. F. X., Van Zanten, A. R. H. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Current Opinion in Critical Care. 27 (4), 344-353 (2021).
  18. Máttar, J. A. Application of total body bioimpedance to the critically ill patient. Brazilian Group for Bioimpedance Study. New Horizons. 4 (4), 493-503 (1996).
  19. Di Somma, S., et al. The emerging role of biomarkers and bio-impedance in evaluating hydration status in patients with acute heart failure. Clinical chemistry and laboratory medicine. 50 (12), 2093-2105 (2012).
  20. Alves, F. D., Souza, G. C., Clausell, N., Biolo, A. Prognostic role of phase angle in hospitalized patients with acute decompensated heart failure. Clinical Nutrition. 35 (6), 1530-1534 (2016).
  21. Alves, F. D., Souza, G. C., Aliti, G. B., Rabelo-Silva, E. R., Clausell, N., Biolo, A. Dynamic changes in bioelectrical impedance vector analysis and phase angle in acute decompensated heart failure. Nutrition. 31 (1), 84-89 (2015).
  22. Colín-Ramírez, E., Castillo-Martínez, L., Orea-Tejeda, A., Vázquez-Durán, M., Rodríguez, A. E., Keirns-Davis, C. Bioelectrical impedance phase angle as a prognostic marker in chronic heart failure. Nutrition. 28 (9), 901-905 (2012).
  23. Stapel, S. N., Looijaard, W. G. P. M., Dekker, I. M., Girbes, A. R. J., Weijs, P. J. M., Oudemans-van Straaten, H. M. Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. European Journal of Clinical Nutrition. 72 (7), 1019-1025 (2018).
  24. Baumgartner, R. N., Chumlea, W. C., Roche, A. F. Bioelectric impedance phase angle and body composition. The American Journal of Clinical Nutrition. 48 (1), 16-23 (1988).
  25. Castillo Martínez, L., et al. Bioelectrical impedance and strength measurements in patients with heart failure: comparison with functional class. Nutrition. 23 (5), 412-418 (2007).
  26. Barbosa Silva, M. C., Barros, A. J. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Current Opinion in Clinical Nutrition & Metabolic. 8 (3), 311-317 (2005).
  27. Piccoli, A. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) Study Group. Kidney International. 53 (4), 1036-1043 (1998).
  28. Piccoli, A., Rossi, B., Pillon, L., Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney International. 46 (2), 534-539 (1994).
  29. Buffa, R., Mereu, R. M., Putzu, P. F., Floris, G., Marini, E. Bioelectrical impedance vector analysis detects low body cell mass and dehydration in patients with Alzheimer’s disease. The Journal of Nutrition, Health & Aging. 14 (10), 823-827 (2010).
  30. Piccoli, A., Codognotto, M., Piasentin, P., Naso, A. Combined evaluation of nutrition and hydration in dialysis patients with bioelectrical impedance vector analysis (BIVA). Clinical Nutrition. 33 (4), 673-677 (2014).
  31. Piccoli, A., et al. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. The American Journal of Clinical Nutrition. 61 (2), 269-270 (1995).
  32. Espinosa-Cuevas, M. A., Rivas-Rodríguez, L., González-Medina, E. C., Atilano-Carsi, X., Miranda-Alatriste, P., Correa-Rotter, R. Vectores de impedancia bioeléctrica para la composición corporal en población mexicana. Revista de Investigación Clínica. 59 (1), 15-24 (2007).
  33. Piccoli, A., Pillon, L., Dumler, F. Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition. 18 (2), 153-167 (2002).
  34. Nwosu, A. C., et al. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clinical Nutrition ESPEN. 30, 59-66 (2019).
  35. Massari, F., et al. Accuracy of bioimpedance vector analysis and brain natriuretic peptide in the detection of peripheral edema in acute and chronic heart failure. Heart & Lung: the Journal of Critical Care. 45 (4), 319-326 (2016).
  36. Kyle, U. G. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clinical Nutrition. 23 (6), 1430-1453 (2004).
  37. Castillo-Martínez, L., Bernal-Ceballos, F., Reyes-Paz, Y., Hernández-Gilsoul, T. Evaluation of fluid overload by bioelectrical impedance vectorial analysis. Journal of visualized experiments. 186, e364331 (2022).
  38. Piccoli, A., Pastori, G. . BIVA software. , (2002).
  39. Bernal-Ceballos, M. F., et al. Phase angle as a predictor of 90-day prognosis in patients with acute heart failure. [Poster presentation]. Poster Abstracts. Journal of Parenteral and Enteral Nutrition. 46, S74-S226 (2022).
  40. Ponikowski, P., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 37 (27), 2129-2200 (2016).
  41. Piccoli, A., et al. Differentiation of cardiac and noncardiac dyspnea using bioelectrical impedance vector analysis (BIVA). Journal of Cardiac Failure. 18 (3), 226-232 (2012).
  42. Scicchitano, P., et al. Respiratory failure and bioelectrical phase angle are independent predictors for long-term survival in acute heart failure. Scandinavian Cardiovascular Journal: SCJ. 56 (1), 28-34 (2022).
  43. González-Islas, D., et al. Body composition changes assessment by bioelectrical impedance vectorial analysis in right heart failure and left heart failure. Heart & Lung: the Journal of Critical Care. 49 (1), 42-47 (2020).
  44. Scicchitano, P., et al. Congestion and nutrition as determinants of bioelectrical phase angle in heart failure. Heart & Lung: The Journal of Critical Care. 49 (6), 724-728 (2020).
  45. Meyer, P., et al. Safety of bioelectrical impedance analysis in patients equipped with implantable cardioverter defibrillators. Journal of Parenteral and Enteral Nutrition. 41 (6), 981-985 (2017).
  46. Garlini, L. M., et al. Safety and results of bioelectrical impedance analysis in patients with cardiac implantable electronic devices. Brazilian Journal of Cardiovascular Surgery. 35 (2), 169-174 (2020).
  47. Bernal-Ceballos, F., Wacher-Rodarte, N. H., Orea-Tejeda, A., Hernández-Gilsoul, T., Castillo-Martínez, L. Bioimpedance vector analysis in stable chronic heart failure patients: Level of agreement between single and multiple frequency devices. Clinical Nutrition ESPEN. 43, 206-211 (2021).
  48. Genton, L., Herrmann, F. R., Spörri, A., Graf, C. E. Association of mortality and phase angle measured by different bioelectrical impedance analysis (BIA) devices. Clinical Nutrition. 37 (3), 1066-1069 (2018).
  49. Nescolarde, L., Lukaski, H., De Lorenzo, A., de-Mateo-Silleras, B., Redondo-Del-Río, M. P., Camina-Martín, M. A. Different displacement of bioimpedance vector due to Ag/AgCl electrode effect. European Journal of Clinical Nutrition. 70 (12), 1401-1407 (2016).
check_url/pt/65660?article_type=t

Play Video

Citar este artigo
Bernal-Ceballos, F., Castillo-Martínez, L., Reyes-Paz, Y., Villanueva-Juárez, J. L., Hernández-Gilsoul, T. Clinical Application of Phase Angle and BIVA Z-Score Analyses in Patients Admitted to an Emergency Department with Acute Heart Failure. J. Vis. Exp. (196), e65660, doi:10.3791/65660 (2023).

View Video