Summary

通过生物精炼方法对红海藻 gracilaria gracilis 进行增值

Published: November 21, 2023
doi:

Summary

在这里,我们描述了旨在对 Gracilaria gracilis进行综合增值的几种协议:野生物种收获,内部生长和生物活性成分的提取。评估了提取物的抗氧化、抗菌和细胞毒性作用,以及富含全海藻生物质和色素的食物的营养和稳定性评估。

Abstract

人们对海藻作为一种丰富的原料,以获得有价值的多目标生物活性成分的兴趣不断增长。在这项工作中,我们探索了 Gracilaria gracilis的潜力,这是一种可食用的红海藻,因其商业利益而在全球范围内种植,作为化妆品、药理学、食品和饲料应用的琼脂和其他成分的来源。

通过无性繁殖和孢子形成优化了G. gracilis的生长条件,同时操纵了物理化学条件,以实现较大的生物量储量。在海藻生物质上使用乙醇和水进行绿色提取方法。通过一组关于提取物细胞毒性、抗氧化和抗菌特性的体外测定来评估提取物的生物活性潜力。此外,干海藻生物质被纳入意大利面配方中,以增加食物的营养价值。从G. gracilis中提取的色素也已作为天然着色剂掺入酸奶中,并对其稳定性进行了评估。这两款产品都经过了半培训的感官小组的评估,旨在在进入市场之前实现最佳的最终配方。

结果支持 G. gracilis 的多功能性,无论是作为整个生物质,提取物和/或色素使用。通过实施几个优化的协议,这项工作允许开发具有潜在利润的产品,以促进食品、化妆品和水产养殖市场,促进环境可持续性和蓝色循环经济。

此外,根据生物精炼方法,残留的海藻生物质将用作植物生长的生物刺激剂或转化为碳材料,用于葡萄牙莱里亚MARE-Polytechnic内部水产养殖系统的水净化。

Introduction

海藻可以被视为一种有趣的天然原料,可以从制药、食品、饲料和环境部门获利。它们生物合成了一整套分子,其中许多分子在陆地生物中没有发现,具有相关的生物学特性1,2。然而,需要实施海藻优化的养殖方案,以确保大量的生物量储存。

栽培方法必须始终考虑海藻菌体的性质和整体形态。 Gracilaria gracilis 是一个克隆类群,这意味着附着器官产生多个营养轴。因此,实现了通过碎片化(无性繁殖)的繁殖,因为这些轴中的每一个都完全能够采用独立于主菌体3 的生命。克隆类群可以通过简单快速的一步培养方法成功整合,因为通过将菌体分解成小片段来获得大量的生物量,这些碎片可以快速再生并生长成新的、基因相同的个体。在此过程中可以使用单倍体和双倍体。尽管该属表现出复杂的单倍双克隆同构三相生命周期,但很少需要孢子形成,除非需要对种群进行遗传更新以实现改良作物。在这种情况下,四孢子(由减数分裂形成的单倍孢子)和果孢子(由有丝分裂形成的双孢子)都会产生宏观的菌体,然后可以通过无性繁殖生长和繁殖4。生长周期取决于环境条件和个体的生理状态,以及其他生物因素,例如附生植物的出现和其他生物的粘附。因此,优化生长条件对于确保高生产力和生产优质生物质至关重要5.

从海藻中提取生物活性化合物,包括G. gracilis,可以通过各种方法实现6,7。提取方法的选择取决于目标化合物的具体化合物、目标应用和海藻的特性。在这项研究中,我们专注于溶剂萃取,这涉及使用绿色溶剂,如水或乙醇,从海藻生物质中溶解和提取生物活性化合物。萃取可以通过浸渍以通用且有效的方式进行,可用于多种化合物。这是一种简单且广泛使用的方法,涉及将生物质长时间浸泡在溶剂中,通常在室温或略高的温度下。搅拌溶剂以增强提取过程。在所需的提取时间之后,通过过滤或离心将溶剂与固体材料分离。

水是食品应用中常用的溶剂,因为它具有安全性、可用性和与各种食品的相容性。水萃取适用于多糖、肽和某些酚类化合物等极性化合物。然而,它可能无法有效地提取非极性化合物。乙醇也是食品应用中广泛使用的溶剂,可有效提取各种生物活性分子,包括酚类化合物、类黄酮和某些色素。乙醇通常被认为是安全的,可以安全地用于食品中,并且很容易蒸发,留下提取的化合物。值得注意的是,提取方法的选择应考虑效率、选择性、成本效益和环境影响等因素。优化提取参数,如溶剂浓度、提取时间、温度和压力,对于从 G. gracilis 或其他海藻中获得最佳生物活性化合物的产量至关重要。

已发现海藻对多种微生物(包括细菌、真菌和病毒)表现出抗菌活性8.这种活性归因于生物活性成分,包括酚类、多糖、肽和脂肪酸。多项研究表明,它们对大肠杆菌、金黄色葡萄球菌、沙门氏菌属和铜绿假单胞菌等病原体具有功效9。海藻的抗菌活性归因于生物活性化合物的存在,这些化合物会干扰微生物细胞壁、膜、酶和信号通路10。这些化合物可能会破坏微生物生长,抑制生物膜形成,并调节免疫反应。

红海藻,也称为红藻,是一组可以对多种微生物表现出抗菌活性的藻类。在该组中, G. gracilis 含有各种生物活性化合物,可能有助于其报告的抗菌活性。虽然具体分子可能有所不同,但已报道的 G. gracilis 中可能具有抗菌特性的常见类别是多糖、酚类、萜类化合物和色素11。然而,需要注意的是,这些成分的存在和数量可能因海藻收集地点、季节性、海藻的生理条件和环境条件等因素而异。因此, G. gracilis 中抗菌化合物的具体类别和浓度可能会相应变化。

G. gracilis 还被发现具有抗氧化特性,含有各种酚类化合物,已被证明可以清除自由基并减少氧化应激12抗氧化剂有助于保护细胞免受活性氧造成的损害,并具有潜在的健康益处。抗氧化能力可以通过不同的方法直接评估,包括 2,2-二苯基-1-三硝基肼 (DPPH) 自由基清除活性,以及间接通过总多酚含量 (TPC) 的定量13

尽管据报道一种成分具有突出的生物活性,但其细胞毒性评估在评估与活细胞或组织接触的天然和合成物质时是必不可少的。有几种测量细胞毒性的方法,每种方法都有优点和局限性。总体而言,它们提供了一系列选择来评估许多物质对细胞的有害影响,同时研究细胞损伤和死亡的机制14

在这项工作中,我们使用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物(MTT)测定法,这是Mosmann(1983)15引入的比色法。该方法测量代谢活性细胞将四唑盐还原为紫色甲瓒产物的过程。甲臜晶体的量越高,活细胞的数量就越多,从而提供了细胞毒性的间接测量14。由于在这项工作中, G. gracilis 水和乙醇提取物旨在掺入皮肤化妆品配方中,因此在角质形成细胞 (HaCaT) 细胞系中进行 体外 细胞毒性评估。

在食品应用方面,海藻通常热量低,营养丰富,富含膳食纤维、必需元素和氨基酸、多糖、多不饱和脂肪酸、多酚和维生素 2,16G. gracilis 也不例外,具有有趣的营养价值。Freitas et al. (2021)4 发现,与野生海藻相比,栽培的 G. gracilis 具有更高水平的蛋白质和维生素 C,并维持了总脂质的水平。这可能代表了一种经济和环境优势,因为从营养上讲,生产比开发野生资源更可取。此外,消费者越来越关注他们所吃的食物类型,因此引入新的成分来丰富食物,并使用新的资源来获得可以为产品增加价值并声称“清洁标签”的提取物非常重要。此外,当前市场竞争非常激烈,需要开发新产品和创新策略,以将制造商与竞争对手区分开来17.

将意大利面等营养价值低的产品与海藻等海洋资源进行富集,是一种通过具有不同营养价值的产品将这种资源作为新食品引入的战略和市场差异化战略。另一方面, G. gracilis 是天然红色素的来源,例如藻胆蛋白18,在食品工业中具有很高的应用潜力。这种海藻在多个领域表现出浓厚的兴趣,其应用可以使用整个海藻、提取物和/或剩余的生物质进行。在这项工作中,我们演示了此类应用的一些示例。

Protocol

1. 生物质收获和制备 在退潮时收获 G. gracilis 标本,并将它们迅速运送到实验室,装在黑暗、冷却的盒子里,以避免干燥、光线和空气暴露。 在实验室中,用流动的海水清洗每个菌体并彻底清洁以去除表面的碎屑、坏死部分、附生植物和其他生物。 将野生生物量保持在恒定充气的海水(31-35 psu)中,在气候室(20±1°C)中,由日光冷白光和荧光灯提供低辐照度,光周?…

Representative Results

抗菌活性 在解释获得的结果时,应记住,抑制百分比越高,提取物在抑制该特定菌株生长方面的功效就越大,因此,提取物作为抗菌剂就越有趣。通过这种方法,我们可以快速确定哪些提取物对某些细菌菌株具有更大的活性,并确定未来使用中最有趣的提取物。因此,我们可以为进一步研究同一提取物提供一个起…

Discussion

液体介质中的抗菌活性测试用于评估抗菌物质对悬浮在液体介质中的微生物的有效性,通常用于确定物质抑制生长或杀死微生物的能力35,36,37,38.它们用于评估微生物对抗菌剂的敏感性,并在试管或微量滴定板中进行,其中不同浓度的抗微生物物质针对目标微生物的标准化悬浮液进行测试2…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了葡萄牙科学技术基金会(FCT)的支持,通过授予MARE-海洋与环境科学中心的战略项目(UIDP/04292/2020和UIDB/04292/2020)和副实验室ARNET(LA/P/0069/2020)。FCT 还资助了授予 Marta V. Freitas (UI/BD/150957/2021) 和 Tatiana Pereira (2021.07791. BD)。这项工作还得到了HP4A–全民健康意大利面项目(共同推广第039952号)的财政支持,该项目由ERDF–欧洲区域发展基金在葡萄牙2020年计划下通过COMPETE 2020–竞争力和国际化运营计划共同资助。

Materials

Absolute Ethanol Aga, Portugal 64-17-5
Ammonium Chloride PanReac 12125-02-9
Amphotericin B Sigma-Aldrich 1397-89-3
Analytical scale balance Sartorius, TE124S 22105307
Bacillus subtilis subsp. spizizenii German Collection of Microorganisms and Cell Cultures (DSMZ) DSM 347
Biotin Panreac AppliChem 58-85-5
Centrifuge Eppendorf, 5810R 5811JH490481
Chloramphenicol PanReac 56-75-7
CO2 Chamber Memmert N/A
Cool White Fluorescent Lamps OSRAM Lumilux Skywhite N/A
Densitometer McFarland Grant Instruments N/A
DMEM medium Sigma-Aldrich D5796
DMSO Sigma-Aldrich 67-68-5
DPPH Sigma, Steinheim, Germany 1898-66-4
Escherichia coli (DSM 5922) German Collection of Microorganisms and Cell Cultures (DSMZ) DSM5922
Ethanol 96% AGA-Portugal 64-17-5
Ethylenediaminetetraacetic Acid Disodium Salt Dihydrate (Na2EDTA) J.T.Baker 6381-92-6
Fetal Bovine Serum (FBS) Sigma-Aldrich F7524
Filter Paper (Whatman No.1) Whatman WHA1001320
Flasks VWR International, Alcabideche, Portugal  N/A
Folin-Ciocalteu VWR Chemicals 31360.264
Gallic Acid  Merck 149-91-7
Germanium (IV) Oxide, 99.999% AlfaAesar 1310-53-8
HaCaT cells – 300493 CLS-Cell Lines Services, Germany  300493
Hot Plate Magnetic Stirrer IKA, C-MAG HS7 06.090564
Iron Sulfate VWR Chemicals 10124-49-9
Laminar flow hood TelStar, Portugal 526013
LB Medium  VWR Chemicals J106
Listonella anguillarum German Collection of Microorganisms and Cell Cultures (DSMZ)  DSM 21597
Manganese Chloride VWR Chemicals 7773.01.5
Micropipettes  Eppendorf, Portugal N/A
Microplates VWR International, Alcabideche, Portugal  10861-666
Microplates Greiner 738-0168
Microplates (sterile) Fisher Scientific 10022403
Microplate reader  Epoch Microplate Spectrophotometer, BioTek, Vermont, USA 1611151E
MTT Sigma-Aldrich 289-93-1
Muller-Hinton Broth (MHB) VWR Chemicals 90004-658
Oven Binder, FD115 12-04490
Oven Binder, BD115 04-62615
Penicillin Sigma-Aldrich 1406-05-9
pH meter Inolab  VWR International, Alcabideche, Portugal  15212099
Pippete tips Eppendorf, Portugal 5412307
Pyrex Bottles Media Storage  VWR International, Alcabideche, Portugal  16157-169
Rotary Evaporator Heidolph, Laborota 4000 80409287
Rotavapor IKA HB10, VWR International, Alcabideche, Portugal 07.524254
Sodium Carbonate (Na2CO3) Chem-Lab 497-19-8
Sodium Chloride (NaCl)  Normax Chem 7647-14-5
Sodium Phosphate Dibasic Riedel-de Haën 7558-79-4
SpectraMagic NX Konica Minolta, Japan color data analysis software
Spectrophotometer Evolution 201, Thermo Scientific, Madison, WI, USA 5A4T092004
Streptomycin Sigma-Aldrich 57-92-1
Thiamine Panreac AppliChem 59-43-8
Trypsin-EDTA Sigma-Aldrich T4049
Tryptic Soy Agar (TSA) VWR Chemicals ICNA091010617
Tryptic Soy Broth (TSB)  VWR Chemicals 22091
Ultrapure water  Advantage A10 Milli-Q lab, Merck, Darmstadt, Germany F5HA17360B
Vacuum pump Buchi, Switzerland FIS05-402-103
Vitamin B12 Merck 68-19-9

Referências

  1. Charoensiddhi, S., Abraham, R. E., Su, P., Zhang, W. Seaweed and seaweed-derived metabolites as prebiotics. Advances in Food and Nutrition Research. 91, 97-156 (2020).
  2. Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M., Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality, and health-related beneficial properties. Food Research International. 99, 1066-1083 (2017).
  3. Hurd, C. L., Harrison, P. J., Bischof, K., Lobban, C. S. . Seaweed Ecology and Physiology. (second). , (2014).
  4. Freitas, M. V., Mouga, T., Correia, A. P., Afonso, C., Baptista, T. New insights on the sporulation, germination, and nutritional profile of Gracilaria gracilis (Rhodophyta) grown under controlled conditions. Journal of Marine Science and Engineering. 9 (6), 562 (2021).
  5. Friedlander, M. Advances in cultivation of Gelidiales. Journal of Applied Phycology. 20 (5), 451-456 (2008).
  6. Matos, G. S., Pereira, S. G., Genisheva, Z. A., Gomes, A. M., Teixeira, J. A., Rocha, C. M. R. Advances in extraction methods to recover added-value compounds from seaweeds: Sustainability and functionality. Foods. 10, 516 (2021).
  7. Ummat, V., Sivagnanam, S. P., Rajauria, G., O’Donnell, C., Tiwari, B. K. Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends in Food Science & Technology. 110, 90-106 (2021).
  8. Pérez, M. J., Falqué, E., Domínguez, H., Ravishankar, G., Ambati, R. R. Seaweed Antimicrobials, Present Status and Future Perspectives. Handbook of Algal Technologies andPhytochemicals:Volume I Food, Health and Nutraceutical Applications. , (2019).
  9. Cavallo, R. A., Acquaviva, M. I., Stabili, L., Cecere, E., Petrocelli, A., Narracci, M. Antibacterial activity of marine macroalgae against fish pathogenic Vibrio species. Central European Journal of Biology. 8, 646-653 (2013).
  10. Shannon, E., Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs. 14 (4), 81 (2016).
  11. Capillo, G., et al. New insights into the culture method and antibacterial potential of Gracilaria gracilis. Marine Drugs. 16 (12), 492 (2018).
  12. Francavilla, M., Franchi, M., Monteleone, M., Caroppo, C. The red seaweed Gracilaria gracilis as a multi products source. Marine Drugs. 11 (10), 3754-3776 (2013).
  13. Sánchez-Ayora, H., Pérez-Jiménez, J., Pérez-Correa, J. R., Mateos, R., Domínguez, R. Antioxidant Capacity of Seaweeds: In Vitro and In Vivo Assessment. Marine Phenolic Compounds. , 299-341 (2023).
  14. Anil, S., Sweety, V. K., Vikas, B., Betsy-Joseph, B. . Cytotoxicity and Cell Viability Assessment of Biomaterials. Cytotoxicity. , 111822 (2023).
  15. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 65 (1-2), 55-63 (1983).
  16. Roleda, M. Y., et al. Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: Health risk assessment and implication for food applications. Food Control. 95, 121-134 (2019).
  17. Souza, K. D., et al. Gastronomy and the development of new food products: Technological prospection. International Journal of Gastronomy and Food Science. 33, 100769 (2023).
  18. Pereira, T., et al. Optimization of phycobiliprotein pigments extraction from red algae Gracilaria gracilis for substitution of synthetic food colorants. Food Chemistry. 321, 126688 (2020).
  19. Redmond, S., Green, L., Yarish, C., Kim, J., Neefus, C., Redmond, S., Green, L., Yarish, C., Kim, J., Neefus, C. . New England Seaweed Culture Handbook-Nursery Systems. , (2014).
  20. Yong, Y. S., Yong, W. T. L., Anton, A. Analysis of formulae for determination of seaweed growth rate. Journal of Applied Phycology. 25 (6), 1831-1834 (2013).
  21. Patarra, R. F., Carreiro, A. S., Lloveras, A. A., Abreu, M. H., Buschmann, A. H., Neto, A. I. Effects of light, temperature and stocking density on Halopteris scoparia growth. Journal of Applied Phycology. 29 (1), 405-411 (2017).
  22. NCCLS, National Committee for Clinical Laboratory Standards, Clinical and Laboratory Standards Institute. . Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. 32, M02-M11 (2012).
  23. Singleton, V. L., Rossi, J. A. J. Colorimetry to total phenolics with phosphomolybdic acid reagents. American Journal of Enology and Viticulture. 16, 144-158 (1965).
  24. Duan, X. J., Zhang, W. W., Li, X. M., Wang, B. G. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry. 95 (1), 37-43 (2006).
  25. Freitas, R., et al. Highlighting the biological potential of the brown seaweed Fucus spiralis for skin applications. Antioxidants. 9 (7), 611 (2020).
  26. Duarte, A., et al. Seasonal study of the nutritional composition of unexploited and low commercial value fish species from the Portuguese coast. Food Science and Nutrition. 10 (10), 3368-3379 (2020).
  27. Folch, J., Lees, M., Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry. 226 (1), 497-509 (1957).
  28. ISO 6865. Animal feeding stuffs – Determination of crude fibre content – Method with intermediate filtration. Bureau of Indian Standards (BIS). , (2000).
  29. Fernández, A., Grienke, U., Soler-Vila, A., Guihéneuf, F., Stengel, D. B., Tasdemir, D. Seasonal and geographical variations in the biochemical composition of the blue mussel (Mytilus edulis L.) from Ireland. Food Chemistry. 177, 43-52 (2015).
  30. Pinto, F., et al. Annual variations in the mineral element content of five fish species from the Portuguese coast. Food Research International. 158, 111482 (2022).
  31. Food energy – methods of analysis and conversion factors. Available from: https://www.fao.org/fileadmin/templates/food_composition/documents/book_abstracts/Food_energy.pdf (2003)
  32. . 1169/2011 of the European Parliament and of the Council of 25 -10-2011 Available from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (2011)
  33. Pathare, P. B., Opara, U. L., Al-Said, F. A. J. Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology. 6 (1), 36-60 (2013).
  34. ISO 4120. Sensory analysis – Methodology – Triangle test. International Standard. , (2004).
  35. Reller, L. B., Weinstein, M., Jorgensen, J. H., Ferraro, M. J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clinical Infectious Diseases. 49 (11), 1749-1755 (2009).
  36. Balouiri, M., Sadiki, M., Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6 (2), 71-79 (2016).
  37. Gajic, I., et al. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics. 11 (4), 427 (2022).
  38. Gonzalez-Pastor, R., et al. Current landscape of methods to evaluate antimicrobial activity of natural extracts. Molecules. 28 (3), 1068 (2023).
  39. Li, J., et al. Antimicrobial activity and resistance: Influencing factors. Frontiers in Pharmacology. 13 (8), 364 (2017).
  40. Silva, A., et al. Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics. 9 (10), 642 (2020).
  41. Munteanu, I. G., Apetrei, C. Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences. 22 (7), 3380 (2021).
  42. Ma, S., et al. Comparison of common analytical methods for the quantification of total polyphenols and flavanols in fruit juices and ciders. Journal of Food Science. 84 (8), 2147-2158 (2019).
  43. Tziveleka, L. A., Tammam, M. A., Tzakou, O., Roussis, V., Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants. 10 (9), 1431 (2021).
  44. Ghasemi, M., Turnbull, T., Sebastian, S., Kempson, I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences. 22 (23), 12827 (2021).
  45. Pereira, T., Barroso, S., Mendes, S., Gil, M. M. Stability, kinetics, and application study of phycobiliprotein pigments extracted from red algae Gracilaria gracilis. Journal of Food Science. 85 (10), 3400-3405 (2020).
check_url/pt/65923?article_type=t

Play Video

Citar este artigo
Martins, A., Pinto, F. R., Barroso, S., Pereira, T., Mouga, T., Afonso, C., Freitas, M. V., Pinteus, S., Pedrosa, R., Gil, M. M. Valorization of the Red Seaweed Gracilaria gracilis Through a Biorefinery Approach. J. Vis. Exp. (201), e65923, doi:10.3791/65923 (2023).

View Video